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Introduction

This work is a contribution to the study of topological K-Theory and cyclic coho-
mology of complete normed algebras. The aim is the construction of a cohomology
theory, defined by a natural chain complex, on the category of Banach algebras
which

a) is the target of a Chern character from topological K-theory (resp. bivariant
K-theory).

b) has nice functorial properties which faithfully reflect the properties of
topological K-theory.

c) is closely related to cyclic cohomology but avoids the usual pathologies of cyclic
cohomology for operator algebras.

d) is accessible to computation in sufficiently many cases.

The final goal is to establish a Grothendieck-Riemann-Roch theorem for the con-
structed Chern character which for commutative C*-algebras reduces to the classical
Grothendieck-Riemann-Roch formula.

In his "Noncommutative Geometry” Alain Connes has developed the framework
for a large number of far reaching generalisations of the index theorems of Atiyah
and Singer. To motivate the problem addressed in this book and to put it in the
right context we recall some basic principles of index theory and noncommutative
geometry.

The classical index theorem for an elliptic differential operator D on a compact
manifold M identifies the Fredholm index of this operator with the direct image of
the symbol class of the operator under the Gysin map in topological K-Theory:

Ind,(D) = wl(o(D))
nl: K*(T*M) - K*(pt.) ~ Z

In more general situations where one considers not necessarily compact manifolds
(for example operators on the universal cover of a compact manifold which are in-
variant under deck transformations, operators on a compact manifold differentiating
only along the leaves of a foliation and being elliptic on the leaves, or elliptic opera-
tors of bounded geometry on an open manifold of bounded geometry) the considered
elliptic operators are not Fredholm operators anymore. Nevertheless it is still pos-
sible to associate an index invariant with them which now has to be interpreted as
an element of the operator K-group of some C*-algebra. Moreover, Kasparov and
Connes proved a number of very general index theorems of the form:

Ind,(D) = nl(o(D)) € Ko(C* — algebra)

The C*-algebras occuring in this way can be of quite general type and their K-
groups usually cannot be identified with the K-groups of some topological space as
in the classical cases.
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As far as applications are concerned, the classical index theorem, formulated
and proved in the context of topological K-theory, gains its full power only after
being translated into a cohomological index formula with the help of a differentiable
Grothendieck-Riemann-Roch Theorem. This theorem claims that for any K-oriented
map f : X = Y of smooth compact manifolds the diagram

K~*x) L5 Kk

o] [o

Hip(X) ———— Hig(Y)
W paeoragy) TR

commutes. Here
ch: K* — Hjp
denotes the Chern character which is given by a universal characteristic class that
identifies complexified topological K-theory of a manifold with its de Rham coho-
mology:
ch: K*(M)®z C = Hjp(M).

Under this translation the direct image in K-theory can be identified with an explicit
pushforward map in cohomology. Together, the index and Grothendieck-Riemann-
Roch theorem yield a formula expressing the Fredholm index of an elliptic operator
D as integral over the manifold of a universal characteristic class associated to the
symbol of D:

Ind,(D) = / characteristic class(o (D))
M

To obtain index formulas from the generalized index theorems above it is neces-
sary to develop a Grothendieck-Riemann-Roch formalism in the context of operator
K-theory. This means that one looks for a (co)homology theory on the category of
C*—, Banach-, resp. abstract algebras, which is defined by a natural chain complex
and carries enough additional structure to provide a commutative diagram

K.(4) - K.(B)

o Jon

H.(A) —— H.(B)

On the subcategory of algebras of smooth (resp. continuous) functions on com-
pact manifolds it should correspond to the classical Grothendieck-Riemann-Roch
theorem.

So the Grothendieck-Riemann-Roch problem consists of three parts:

1. Define a (co)homology theory for Banach- (C*-) algebras which generalizes
the deRham (co)homology of manifolds.

2. Construct a Chern-character from K-theory to this noncommutative deRham-
(co)homology.
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3. Find a cohomological pushforward map and establish a suitable Grothendieck-
Riemann-Roch theorem.

After having formulated this program, Alain Connes also made the first real
breakthrough concerning a solution of the problem. In his foundational paper ” Non-
commutative Differential Geometry” [CO] he introduced a generalization of de Rham
theory in the noncommutative setting, cyclic (co)homology HC(resp. HC*), which
can be calculated as the (co)homology of a functorial chain complex vanishing in
negative dimensions , and he constructed an algebraically defined Chern character

ch: K, - HC,.
The dual Chern character pairing
ch: K, ® HC* - C

generalizes the pairing between idempotent matrices and traces in degree zero and
the pairing between invertible matrices and closed one-currents on the given algebra
in degree one.

Cyclic cohomology proved to be a very powerful tool in many areas of K-theory,
as the large number of well known applications shows. The project of constructing
characteristic classes for operator K-theory however soon faced serious difficulties.
Whereas the 7 /27-periodic version

HP* .= lim HC* 1%
-k

of cyclic cohomology of the algebra of smooth functions on a manifold coincides
with the deRham homology of the manifold,

HP*(C®(M)) ~ HIF(M),

the periodic cyclic cohomology of its enveloping C*-algebra of continuous functions
equals the space of Borel measures on M in even degree and vanishes in odd degree.

C(M) x=0

HP"(C(M)):{O o

Thus while the Chern character pairing between reduced K-theory and reduced
periodic cyclic cohomology yields a perfect pairing for the Fréchet algebra C*°(M),
it vanishes for its enveloping C*-algebra C(M). (Note that both algebras can be
considered as equivalent as far as K-theory is concerned). This example shows how
cyclic cohomology and K-theory can behave quite differently in certain situations
and that the Chern character from K-theory to cyclic homology can be far from
being an isomorphism.
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Actually the pathological behaviour of the Chern character pairing for (stable)
C*-algebras has nothing to do with the particular structure of cyclic cohomology but
is a consequence of the continuity of the Chern character as the following argument
shows:

Let C. be any cyclic theory, i.e. a functor from Banach algebras to chain com-
plexes equipped with a Chern character ch : K,A — h(C.A) associating a cycle to
each idempotent (resp. invertible) matrix over A. Let ¢ be an even cocycle for this
theory (the argument for odd cocycles is similar). This cocycle yields a map (still
denoted by the same letter)

p: {e€ A, 3223} - C

which provides the pairing of the cohomology class of ¢ with K(A).

Suppose that the Chern character pairing satisfies the following conditions:
(They hold for the Chern character pairings with continuous periodic cyclic co-
homology HP* and with entire cyclic cohomology HC.)

1) ¢(e) depends only on the homotopy class of e.
2) p(e) = p(e') + @(e") if [e] = [e'] + [¢"'] in Ko(A).
3) |e(e)| < F(]| e ]|) for some function F' on the real half-line.

Then if A happens to be a stable C*-algebra, the pairing K, A ® h(C*A) —» C
equals zero:

In fact one observes that the image of the map ¢, viewed as a subset of C, is
closed under addition because A is stable and condition 2) holds. On the other hand
this image is bounded by conditions 1) and 3), as any idempotent in a C*-algebra
is homotopic to a projector (selfadjoint idempotent) and nonzero projectors in C*-
algebras have norm 1. So the image of ¢ is a bounded subset of € closed under
addition and thus zero.

This fact is quite annoying because the generalized index theorem and the hypo-
thetical Grothendieck-Riemann-Roch are theorems about C*-algebras and do not
hold for more general Banach or Fréchet algebras (bivariant K-theory is well be-
haved only for C*-algebras). Moreover, it is just the study of the K-theory and the
cohomology of C*-algebras which is at the heart of the most important applications:
in the index-theoretic approach to the Novikov-conjecture on higher signatures of
manifolds, for example, one has to analyse the K-theory and cyclic cohomology of
the group-C*-algebra C},;(T') of the fundamental group of the manifold under con-
sideration. Finally another difficulty in establishing a Grothendieck-Riemann-Roch
formula is that the pushforward maps of operator K-theory have no counterpart in
cyclic homology.

Connes and Moscovici defined in [CM] a modified version of cyclic cohomology,
called asymptotic cyclic cohomology, and pointed out that this theory should provide
a nontrivial cohomology theory on the category of C*-algebras. Our work can be
viewed as attempt to realize this program. This also explains the title of the book.
The initial setup of asymptotic cyclic cohomology in [CM] had to be modified in
several ways and the theory we are going to develop is however not equivalent to
the one originally defined by Connes and Moscovici.
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Our aim is to develop a cyclic theory, called asymptotic cyclic cohomology af-
ter [CM], which is the target of a Chern character that appropriately reflects the
structure and the typical properties of operator K-theory. The theory will general-
ize ordinary and entire cyclic cohomology providing thus a framework for the ex-
plicit construction of (geometric) cocycles and the calculation of their pairing with
concrete elements of K-groups. Finally we establish a generalized Grothendieck-
Riemann-Roch theorem for the Chern character from operator K-theory to stable
asymptotic homology. This will be achieved by the construction of a bivariant
Chern character on Kasparovs bivariant K-theory with values in bivariant stable
asymptotic cyclic cohomology.

The above argument for the vanishing of the Chern character pairing gives a
first hint how one has to modify cyclic cohomology to get a theory with the desired
properties. Cochains should consist of densely defined and unbounded rather than
of bounded functionals or, as Connes-Moscovici propose in [CM], continuous families
of unbounded cochains with larger and larger domains of definition.

To realize our goal we however start from a quite different line of thought. Our
point of departure is on one hand the work of Connes, Gromov and Moscovici [CGM]
on almost flat bundles and of Connes and Higson [CH] on asymptotic morphisms
and bivariant K-theory, and on the other hand the work of Cuntz and Quillen [CQ)]
on cyclic cohomology and universal algebras.

In [CH] Connes and Higson made the important observation, that K-theory be-
comes in a very natural way a functor on a much bigger category than the ordinary
category of Banach (C*-algebras), namely on the category with the same objects
but with the larger class of so called ”asymptotic morphisms” as maps. Especially
they showed that every pushforward map in K-theory associated to a generalized
index theorem is induced from an explicitely constructible asymptotic morphism of
the C*-algebras involved.

A (linear) asymptotic morphism of Banach algebras is a bounded, continuous
family (f¢, ¢ > 0) of continuous (linear) maps f: : A — B such that

tl_lglo fi(aad") — fi(a)fi(a') = 0 Va,a’ € A

The deviation from multiplicativity
w(a,a’) := fi(ad') — fi(a)fe(a’)

is called the curvature of f; at (a,a’).

The interest in this notion originates (among other things) from the fact, that
the E-theoretic K-groups, which are a modification of Kasparov’s KK-groups, can
be described as groups of asymptotic morphisms.

A cohomology theory that is the target of a good Chern character on operator
K-theory should certainly have the same functorial properties as K-theory itself.
Cyclic (co)homology however is by no means a functor on the asymptotic category.
Therefore it is no surprise that the Chern character in cyclic homology fails to be
an isomorphism in general.
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On the other hand Connes, Gromov and Moscovici showed in [CGM], that the
pullback of a trace 7 on an algebra B under a linear map f : A — B may be
interpreted as an even cocycle in the cyclic bicomplex of A:

)
f*T:Z¢2n )

n=0
Moreover its components (p?") decay exponentially fast
P2 (@,...,a™)| <

when evaluated on tensors with entries a°,...,a?" belonging to a fixed finite subset
¥ of A. The constant C depends on the deviation of f from being multiplicative on
3.

Cochains with this growth behaviour occur already in the calculations of localized
analytic indices of Connes and Moscovici [CM], where the authors point out that a
cyclic theory for C*-algebras should be based on such cocycles.

Relating this to the approach to cyclic cohomology via traces on universal algebras
by Cuntz and Quillen [CQ] suggests that it might be possible to pull back arbitrary
cochains in the cyclic bicomplex under linear maps and that in fact every even(odd)-
dimensional cocycle in the cyclic bicomplex could be obtained as the pullback of a
trace (resp. a closed one-current) under a linear map.

Thus one might hope to reinterpret cyclic cohomology as being given by a chain
complex that behaves functorially under linear maps and to obtain an asymptotic
cyclic theory as the envelope under linear asymptotic morphisms of the ordinary
cyclic theory. Cochains in this theory should be characterized by natural growth
(resp. continuity) conditions as in the example above. In fact any cyclic theory
which is functorial under asymptotic morphisms would possess the pushforward
maps necessary to formulate a GRR theorem.

So our starting point for the construction of asymptotic cyclic cohomology will be
to take ordinary cyclic theory and to extend it to a functor on the linear asymptotic
category C. (We restrict ourselves to linear asymptotic morphisms. It would have
been possible to dispense with this restriction but only at the cost of making the
formulas much more complicated without providing a wider range of applications.)
This means the following. First we choose a natural chain complex C* calculating
cyclic cohomology, i.e. a functor

C* : Algebras — Chain Comblexes

such that
H*(C*)~ HC* .
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Then we consider pairs (C},®) consisting of
a)
a functor
C%: C — Chain Complexes ,

such that the corresponding homology groups define a homotopy functor

HC}, := H*(C}): HomotC — (€ — Vector Spaces

b)
a morphism of functors
®: C* = Clagebras

on the category of algebras inducing a natural transformation
HC* — HC,

from ordinary to asymptotic cyclic cohomology.

Among all such pairs we look for a minimal one, i.e. a pair satisfying the obvious
universal property. By an argument due to J.Cuntz any such cohomology theory will
be Bott-periodic, so that C;, (and C*) should in fact be Z/2Z-graded complexes.

In [CO] Connes introduced a natural Z/2Z-graded complex, the (b,B)-bicomplex
CC, of a unital algebra. An equivalent (but not identical) complex QP4  the
periodic de Rham complex, has been constructed later on by Cuntz and Quillen
[CQJ. These are both complexes of modules of formal differential forms over the given
algebra and carry a natural filtration (Hodge filtration), derived from the degree
filtration on differential forms. The quotient complexes with respect to the Hodge
filtration successively compute the cyclic homology groups HC, and the completed
complexes QP4R (with respect to the Hodge filtration) calculate the periodic cyclic
homology H P, of Connes. The periodic de Rham complex provides in our opinion
the best choice for the complex C* above and it is therefore QF4® that will be

extended to a functor on the linear asymptotic category.

The universal problem above can be solved provided that the forgetful functor

Banach-algebras — C

has a right adjoint R¢. An explicit solution would then be given by
Qf'm"’ = Qf‘m o Re

If one forgets the topology for the moment and looks at the problem at a purely
algebraic level, there is indeed an adjoint, provided by a canonical quotient of the

full tensor algebra:
RA = TA/(14 - 1¢)

This would lead to R R
QPR (4) = QPR (RA)
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The algebras RA are of Hochschild cohomological dimension one, which makes it
possible to calculate their periodic cyclic homology via the quotient complex of the
periodic de Rham complex by the second step of the Hodge filtration, the so called
X-complex of Cuntz-Quillen:

QPIR(RA) L2 X, (RA)

where the X-complex is given by

X.(A): » A 5 Qa/0ia,4 5 A o
In fact, Cuntz and Quillen [CQ] showed that cyclic homology can be developed
starting from the X-complex of tensor algebras (resp. quasifree algebras). Moreover
one obtains in this way a very natural and advantageous viewpoint of the basic
features of the theory.
A basic observation is that the tensor algebras RA are canonically filtered by

powers of the ideal
mult

0>IA—-RA— A—>0

So although the algebra RA depends only on the underlying vector space of A, the
I-adic filtration on RA makes it possible to recover the multiplicative structure of A.
Remarkably, the X-complex of RA with its I-adic filtration turns out to be quasiiso-
morphic, as filtered complex, to the periodic de-Rham complex of A with its Hodge
filtration. So whereas the complex X,(RA) is easy to manipulate algebraically it
also contains all information encoded in the periodic de Rham complex of A with
its Hodge filtration. Especially one recovers the periodic cyclic homology of A as
the homology of the X-complex of the (algebraic) I-adic completion of RA:

OPIR(4) & X, (RA)
HP.(A) = H.(X.(RA))

In fact, the I-adic completion RA of RA is still of cohomological dimension one
although quite far from being free.

The description of periodic cyclic (co)homology using the X-complex of tensor
algebras exhibits the functoriality of the (uncompleted) cyclic complexes with re-
spect to linear maps which is crucial for us but somewhat hidden if one uses Connes
original cyclic (b, B)-bicomplex.

Moreover the Cuntz-Quillen approach enables one to construct product opera-
tions and homotopy operators for cyclic theories on the level of chain complexes by
a uniform procedure. One tries to guess the right formulas for the periodic de Rham
complex on differential forms of degree zero and one modulo error terms of higher
degree. For free algebras, which are of Hochschild cohomological dimension one, the
second step of the Hodge filtration is contractible, so that it becomes possible to get
rid of the error terms in this case. This yields by passing to the quasiisomorphic
quotient complexes a map of X-complexes of free algebras. For free algebras of the
form RA one finally recovers by taking the associated graded complexes with respect
to the I-adic filtration the whole periodic de Rham complex of the initial algebra A,
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this time with a globally defined chain map reducing to the initial formula on forms
of low degree. As homotopic initial maps on forms of low degree provide homotopic
global chain maps in the end, the effect of the constructed chain maps on homology
is determined by their effect on ordinary cyclic homology of degree zero and one,
respectively.

There is a ”Cartesian square” of functors

Algebras M} Algebras, linear maps

R.I—n,dicfiltl 1R

Filtered Alg. —2%%, Algebras

on the level of morphism sets.

This shows that the I-adic filtrations on the complexes X,(RA) are never pre-
served by a homomorphism of tensor algebras which is induced by a linear morphism
that is not multiplicative. Therefore not the degree, but only the parity of an ordi-
nary cyclic cycle is preserved under pushforward by a linear morphism. In fact any
even (odd) cocycle (in the Z-graded setting) occurs as the linear pullback of a trace
(closed one-current). This explains again why only a Z/27-graded theory can be
defined on the linear asymptotic category.

Concerning the original aim of making cyclic cohomology functorial under linear
asymptotic morphisms our goal can be described (in terms of the Cuntz-Quillen
approach) as follows.

Consider the diagram

Morphisms: linear e-mult. mult.
Algebras: A = A = A
! ! y
Algebras: RA C RA=? C RA
1 1 4

Chain complexes: X,(RA) C X,(RA) C X.(RA)

In the right column the Cuntz-Quillen procedure for obtaining the cyclic complex
of A is described. The universal way to extend this construction to the category of
algebras with linear maps as morphisms is given in the left column: one replaces
the given algebra by its tensor algebra and constructs the cyclic complex of the
latter algebra. The tensor algebra already being free one can directly pass to its
X-complex. The complex X, (RA) cannot be interesting homologically however. It
has to be contractible because every linear map is linearly homotopic to zero. Being
interested in a nontrivial homology theory which is functorial under asymptotic
morphisms, i.e. a functor on a ”category of e-multiplicative linear maps” we have
to look for an intermediate theory. One has to find a topological completion of the
tensor algebra RA which is not contractible but functorial under e-multiplicative
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maps. If it is moreover of cohomological dimension one one can again take its X-
complex to arrive at a reasonable theory (middle column). Such a completion is
constructed as follows.

Let f : A — B be an almost multiplicative linear map of Banach algebras. Then
the induced homomorphism Rf : RA — RB of tensor algebras will not preserve I-
adic filtrations but the norms of the occuring ”error terms” will decay exponentially
fast with their I-adic valuation. This suggests the following construction: Fix a
multiplicatively closed subset K of A and consider tensors over A with entries in
K. Expand a given element of this subalgebra of RA in a standard basis with
respect to the I-adic filtration. A weighted L!-norm for the coefficients of such
an expansion is then introduced allowing the coefficients to grow exponentially to
the basis N > 1 with respect to the I-adic valuation. Denote the corresponding
completion by RA(k n). It is a Fréchet algebra and possesses the following crucial
property: If f : A — B is linear with curvature uniformly bounded on K C A
by a sufficiently small constant then Rf induces a continuous homomorphism Rf :
RAk,ny = RB(k: nv) for suitable K’ ¢ B, N" > 1. Usually f will be a linear
asymptotic morphism. As the curvature of an asymptotic morphism is uniformly
bounded only over compact sets, the multiplicatively closed subsets K C A used for
the construction above will always be assumed to be compact. It turns out that the
algebras RA(k n) are also of cohomological dimension one.

The Fréchet algebras RA (g ny form an inductive system with formal inductive
limit RA. This limit could be called the topological I-adic completion of RA. It
should be viewed as virtual infinitesimal thickening of A as the kernel of the pro-
jection m : RA — A is formally topologically nilpotent (i.e. the spectrum of its
elements equals zero).

We define the analytic X-complex X¢ of a Banach algebra to be the reduced
X-complex of the topological I-adic completion of the tensor algebra of its unital-
ization. The cohomological analytic X-complex is closely related to the entire cyclic
bicomplex of Connes. It turns out to be convenient to introduce also a bivariant
analytic X-complex X}(—, —) of a pair of algebras as the Hom-complex of the as-
sociated analytic X-complexes. The bivariant analytic X-complex is a bifunctor on
the category of Banach algebras and its cohomology groups are smooth homotopy
bifunctors. There exists an obvious composition product

X! (A,B)® X!(B,C) = X}(A,C) .

The fundamental functoriality of the locally convex algebras RA(k n) under al-
most multiplicative linear maps implies that every linear asymptotic morphism
ft:A-> B, t>0
induces a continuous homomorphism of formal inductive limit algebras
Rf:RA = RB®x Ox(RY) .

Here O (RS°) is the algebra of germs around oo of smooth functions on the asymp-
totic parameter space RS°. This leads one to define the (cohomological) asymptotic
X-complex X}(A) of a Banach algebra A as the cohomological X-complex of the
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formal topological I-adic completion RA with coefficients in the formal inductive
limit algebra Qs (RS°). The bivariant asymptotic X-complex X (A, B) of the pair
(A, B) is introduced as the complex of germs at co of homomorphisms between the
X-complexes of the formal topological I-adic completions RA and RB (See chap-
ter 6). By construction any linear asymptotic morphism defines an even cocycle in
the bivariant asymptotic X-complex. The composition product carries over to the
asymptotic setting and turns X}(—, —) into a bifunctor on the linear asymptotic
category. Moreover bivariant asymptotic cohomology becomes a (continuous)
asymptotic homotopy bifunctor.

So much for the motivation and definition of the asymptctic cyclic theory. We
have to be more precise at one point however. Asymptotic morphisms do not consist
of a single, but of whole families of linear maps, and one has to keep track of the
chain homotopies provided by evaluation at different ”parameter values” in such
families.

We do this by working throughout in the category of differential graded algebras
and differential graded chain complexes. The asymptotic X-complex of the universal
enveloping differential graded algebra of the given algebra is large enough to con-
tain the higher homotopy information needed. One obtains then Cartan homotopy
formulas for the "change of asymptotic parameters”.

There are natural maps
cer - X, cer —» X}
in the derived category yielding natural transformations
HP* - HC}, HC! — HC},
on cohomology.

For the algebra of complex numbers the maps on cohomology above are isomor-
phisms. More generally, analytic and asymptotic homology coincide:

HC(C,A) ~ HC!(C,A) .
The corresponding cohomology groups are in general quite different however.

The well known pairings between cyclic theories and K-theory extend to a pairing
K.® HC? — (. It is uniquely determined by its naturality with respect to asymp-
totic morphisms and by demanding that it restricts to the classical pairing between
idempotents and traces (resp. invertible elements and closed one-currents) on the
ordinary cyclic complex. As for a given value of the asymptotic parameter a cocycle
is given by a sequence of densely defined multilinear functionals on the underlying
algebra A, the pairing can be defined for this choice of parameter only for special
representatives of a finite number of classes in K,A. Taking a family of parameter
values which approaches oo in the asymptotic parameter space allows to define the
pairing on larger and larger subsets of K, A which finally exhaust the whole K-group
and yield the pairing globally. This behaviour explains why the argument at the
beginning of the introduction showing the pathological nature of the Chern chracter
pairing for the classical cyclic theories on stable C*-algebras does not apply to the
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asymptotic theory. Indeed there is a large class of stable C*-algebras for which the
pairing of K-theory with asymptotic cohomology is nondegenerate.

The most striking new phenomenon of asymptotic cyclic theory is that inclusions
of holomorphically closed subalgebras become cohomology equivalences in many
cases. This often allows one to construct asymptotic cocycles on C*-algebras by
lifting well known cyclic cocycles from a suitable dense subalgebra.

Since these subalgebras are not Banach algebras anymore, we develop the theory
for the slightly larger class of admissible Fréchet algebras, i.e. Fréchet algebras
possessing an analogue of the open unit ball of Banach algebras. These algebras
seem to provide the natural framework for our theory.

The descent principle to holomorphically closed dense subalgebras can be used
to show that asymptotic cyclic cohomology is stably Morita invariant: for any C*-

algebra A the inclusion
A = A®c- K(H)

induces an asymptotic (co)homology equivalence.

In particular
C =0

0 x=1

in sharp contrast to the cyclic theories known so far.

HC; () = {

In order to go further it is necessary to develop product operations. By the
principles explained above we are able to construct a chain map

x: X,R(A® B) - X,RA®X,.RB
which is associative up to homotopy and yields exterior products
X?o(A)BX?4(B) = X! 4(A®x B)
both for analytic and asymptotic cohomology.

It behaves naturally with respect to asymptotic morphisms. Moreover, the pair-
ing of K-theory with analytic (resp. asymptotic) cohomology is compatible with
exterior products. To be precise, the compatibility of the products in K-theory
resp. the cyclic theories holds only up to a factor 273 if the involved classes are of
odd dimension: the cyclic theories are a priori Z/2Z-graded, whereas the product
of odd classes in K-theory has to be defined using Bott periodicity, which causes
the ”period” factor 27i. This makes me believe that the exterior product on coho-
mology coincides up to normalization constants with Connes’s product. I have not
investigated this point however.
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The attempt to define an exterior product of bivariant X-complexes was only
partially successful up to now. The main difficulty lies in the construction of a
homotopy inverse of the exterior product map for the ordinary X-complexes above.
(See [P], where meanwhile a natural homotopy inverse has been constructed.) At
least it is possible to establish a particular consequence of a bivariant product op-
eration, namely the existence of a slant product

K.(A)® HC! ,(A®, B) » HC? ,(B)

It is constructed in such a manner that any idempotent (or invertible) matrix over
A gives rise to an explicit map X} (A ®, B) - X! ,(B) of chain complexes. Its
homotopy class depends only on the K-theory class of the given matrix. The slant
product behaves naturally with respect to asymptotic morphisms and is compatible
with the exterior product. It represents a convenient tool to prove the split injec-
tivity of the exterior product with cohomology classes in the image of the Chern
character. As an application we show that the exterior (resp. slant) product with
the fundamental class of the circle yields an isomorphism

HC? (ST, ST) ~ HC:(C, T)

of the bivariant asymptotic cohomology of € and its suspension SC = Cp(IR). Ex-
tending this argument from C to more general admissible Fréchet algebras A by
taking the exterior product with the bivariant cohomology class of the identity on
A unfortunately fails: the exterior product is only defined for unital algebras and
unitalization does not commute with taking tensor products (the suspension of an
algebra is nonunital). In fact it seems to me to be a difficult question, whether
an admissible Fréchet algebra is equivalent in asymptotic cohomology to its double
suspension (this could be called a cohomological Bott periodicity theorem). In fact
such a periodicity theorem would be highly desirable because it necessarily has to
hold for any theory with reasonable excision properties.

At this point the E-theoretic description of Bott periodicity [CH] fortunately
saves us as it realizes the bivariant Bott- resp. Dirac elements inducing the K-
theoretic periodicity maps stably by (nonlinear) asymptotic morphisms. This allows
to prove a stable version of cohomological periodicity: there are natural asymptotic
cohomology equivalences

asp € HCCI,(SZA.SA). Bsa € HCOII(SA,SZA).
inverse to each other under the composition product.

Suspending an algebra therefore only produces a shift of its stable asymptotic
cohomology groups HC?(S—, S—), so that stable asymptotic cohomology becomes
in fact a bifunctor on the stable linear asymptotic homotopy category. This opens
the way to derive exactness and excision properties of stable asymptotic cohomology
which make these groups quite accessible in many situations. By adapting a well
known argument from stable homotopy theory, it can be shown that the long cofibre
(Puppe) sequence associated to a homomorphism f : A — B of admissible Fréchet
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algebras induces six term exact sequences on (bivariant) stable asymptotic coho-
mology relating the stable cohomology groups of A and B to those of the mapping
cone Cy of f. A short exact sequence

0-J—=sA4A5B>0

of admissible Fréchet algebras gives rise to six term exact cohomology sequences
if and only if stable excision holds. This means that the inclusion of the kernel J
into the cofibre C}, of the quotient map p induces a stable asymptotic (co)homology
equivalence. Following an argument of Connes and Higson we show that stable ex-
cision holds for any epimorphism of separable C*-algebras that admits a bounded
linear section. This is the only place where we have to restrict ourselves to a par-
ticular class of admissible Fréchet algebras, as we need the existence of a bounded,
positive, quasicentral approximate unit in the kernel J of p.

With all this machinery developed it becomes possible to extend the Chern char-
acter to the bivariant setting, i.e. to construct a transformation of bifunctors:

ch: KK*(-,—) - HC%(S—,S-)

from Kasparov’s KK-theory to stable bivariant asymptotic cohomology. In principle
it is given by the "composition” (see [CH])

KK* - E*” " HC, , ,
where the "arrow” on the right hand side maps an asymptotic morphism to the
corresponding bivariant asymptotic cocycle. As the asymptotic morphisms of E-
theory are nonlinear however, one has to be careful in the actual construction of
the bivariant Chern character. In particular, one obtains a Chern character on K-
homology defined for arbitrary Fredholm modules and generalizing the constructions
known so far. The Kasparov product on bivariant K-theory corresponds to the
composition product on asymptotic cohomology, which is precisely the

Grothendieck-Riemann-Roch Theorem:

The diagram
KK*(A,B)® KK*(B,C) —%5 KK*(A,C)

ch®ch1 lch

solew
HC}(SA,SB)® HC%(SB,SC) B0y HC}(SA,SC)
commutes. For A = (€ this yields a Grothendieck-Riemann-Roch formula as asked
for in the beginning.

(The factor 27i occurs for the same reason as in the comparison theorem of
the ordinary Chern character with products). Consequently the Chern character
of a KK-equivalence yields a stable asymptotic (co)homology equivalence. The
bivariant Chern character becomes an isomorphism between complexified KK-theory
and stable bivariant asymptotic cohomology on a class of separable C*-algebras
containing € and being closed under extensions with completely positive lifting and



