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Series Foreword

Artificial intelligence is the study of intelligence using the ideas and
methods of computation. Unfortunately a definition of intelligence seems
impossible at the moment because intelligence appears to be an amal-
gam of so many information-processing and information-representation
abilities.

Of course psychology, philosophy, linguistics, and related disciplines
offer various perspectives and methodologies for studying intelligence.
For the most part, however, the theories proposed in these fields are too
incomplete and too vaguely stated to be realized in computational terms.
Something more is needed, even though valuable ideas, relationships,
and constraints can be gleaned from traditional studies of what are, after
all, impressive existence proofs that intelligence is in fact possible.

Artificial intelligence offers a new perspective and a new methodol-
ogy. Its central goal is to make computers intelligent, both to make them
more useful and to understand the principles that make intelligence pos-
sible. That intelligent computers will be extremely useful is obvious. The
more profound point is that artificial intelligence aims to understand in-
telligence using the ideas and methods of computation, thus offering a
radically new and different basis for theory formation. Most of the people
doing work in artificial intelligence believe that these theories will ap-
ply to any intelligent information processor, whether biological or solid
state.

There are side effects that deserve attention, too. Any program that
will successfully model even a small part of intelligence will be inher-
ently massive and complex. Consequently artificial intelligence continu-
ally confronts the limits of computer-science technology. The problem
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Series Foreword

encountered have been hard enough and interesting enough to seduce
artificial intelligence people into working on them with enthusiasm. It is
natural, then, that there has been a steady flow of ideas from artificial
intelligence to computer science, and the flow shows no sign of abating.

The purpose of this series in artificial intelligence is to provide people
in many areas, both professionals and students, with timely, detailed
information about what is happening on the frontiers in research centers
all over the world.

J. Michael Brady
Daniel G. Bobrow
Randall Davis
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