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Preface

The pace of scientific and technical advance in human genetics has not slack-
ened since our third edition appeared in 2004. This has mandated a thorough
revision and reorganization of Human Molecular Genetics with much of the text
being completely rewritten. While only a few of the basic introductory chapters
retain their identity from the third edition, the aims of the text remain the same:
to provide a framework of principles rather than a list of facts, to provide a bridge
between basic textbooks and the research literature, and to communicate our
continuing excitement about this very fast-moving area of science.

The ‘finished’ human genome reference sequence was published in 2004 and
we are now entering an era where vast DNA sequence datasets will be produced
annually. The game changer is the advent of massively parallel DNA sequencing
which is already transforming how we approach genetics. Single molecule
sequencing will lead to a dramatic reduction in DNA sequencing costs and prom-
ises the ability to sequence a human genome in hours. We can confidently expect
that the genomes of huge numbers of organisms and individuals will have been
completed before the next edition of this book.

Powerful bioinformatics programs are already being pressed into service to
compare our genome with that of a burgeoning number of other organisms.
Comparative genomics is helping us understand the forces that have shaped the
evolution of our genome and that of many model organisms that are so impor-
tant to research and various biomedical applications. These studies have already
been extremely helpful in defining the most highly conserved and presumably
important parts of our genome. They are also helping us to identify the fastest
changing components of our genome and what it is that makes us unique.

Sequence-based transcriptomic analysis will become a major industry. It will
be an important player in our quest to understand human gene function within
the context of large projects, such as the ENCODE project that aims to create an
encyclopedia of DNA elements of known function. Eventually, as vast datasets
are accumulated on gene function, the stage will truly be set for systems biology
to develop.

Other large scale projects such as HapMap have been exploring the range of
genetic variation across the world’s populations. In disease-related research,
genome-wide screening for copy number variants has identified the problems
affecting many individual patients and led to the delineation of new microdele-
tion and microduplication syndromes. Whole exome sequencing is now poised
to explain the causes of many rare recessive conditions. In cancer, the first full
genome sequences of tumors are starting to reveal the landscape of carcinogen-
esis in unprecedented detail.

For common complex diseases, however, the picture is less pleasing. A com-
bination of new science (HapMap) and new technology (high-throughput SNP
genotyping) has finally allowed researchers to identify genetic susceptibility fac-
tors for common diseases, but it has become apparent that the variants revealed
by genome-wide association studies explain only a very small part of the overall
genetic susceptibility to most complex diseases. We are left with a problem—
where is the hidden heritability? Will it be found by large-scale resequencing, or
perhaps might it lie in epigenetic effects?
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All these developments have affected both the way genetics research is done,
and the way we think about our genome. Genetics is more than ever about
processing and collating vast amounts of private and public data to extract mean-
ingful patterns. The data have also been forcing us to revise some of our basic
ideas about human genetics. Humans are more variable than we thought, with
copy number variants accounting for more variable nucleotides than SNPs. We
transcribe almost all of our genome, and the old picture of discrete genes thinly
scattered across a sea of junk DNA is starting to look untenable. Cells are now
known to be awash with a startling variety of noncoding RNAs of unknown func-
tion. Perhaps our genome might be primarily an RNA, rather than a protein,
machine.

The fourth edition of Human Molecular Genetics has therefore been heavily
updated in order to maintain its hallmark currency and continue to provide a
framework for understanding this exciting and rapidly advancing subject.
Coverage of epigenetics, noncoding RNAs, and cell biology, including stem cells,
have all been expanded. Greater detail has been provided on the major animal
models used in genetic studies and how they are used as models for human dis-
ease. The most recent developments in next generation sequencing and com-
parative genomics have been included. The text closes by looking at the develop-
ment of therapies to treat human disease. Genetic testing and screening, stem
cells and cell therapy, and personalized medicine are all discussed together with
a balanced view of the ethical issues surrounding these issues.

We would like to thank the staff at Garland Science who have undertaken the
job of converting our drafts into the finished product, Elizabeth Owen, Mary
Purton, David Borrowdale, and Simon Hill, and hope readers will appreciate all
the work they have put into this. As ever we are grateful to our respective families
for their forbearance and support.

TEACHING RESOURCES

The images from the book are downloadable from the web in JPEG and
Powerpoint® formats via the Classwire™ course management system. The
system also provides access to instructional resources for other Garland Science
books. In addition to serving as an online archive of electronic teaching resources,
Classwire allows instructors to build customized websites for their classes. Please
visit www.classwire.com/garlandscience or email science@garland.com for
further information. (Classwire is a trademark of Chalkfree, Inc.)
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