BRUCE OI'd y

A Language for
Distributed Computing

8y - 8
Zhoh =Fs

| B, 1
¢e00 2 = ¢

—3 = -

ROBERT E. STROM
DAVID E BACON / ARTHUR P GOLDBERG
= ANDY LOWRY/ DANIEL M. YELLIN

SHAULA ALEXANDER YEMINI

—— Prentice Hall Series in Innovative Technology ——

P
()
-

¢
o2
(@)
O
Gt
g
e

Hermes
A Language for Distributed Computing

Robert E. Strom

David F. Bacon Arthur P. Goldberg Andy Lowry
Daniel M. Yellin Shaula Alexander Yemini

IBM T. J. Watson Research Center
}"ﬂ(/{l -) -

/5 T\

/ ’:‘ \

l - % 3 .

| |
Ak

R

E9262571

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Editorial/production supervision: MARY P ROTTINO
Cover design: WANDA LUBELSKA, DESIGNS
Manufacturing buyers: KELLY BEHR and SUSAN BRUNKE
Acquisitions editor: PaurL BECKER

© 1991 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing

College Technical and Reference Division
Prentice Hall

Englewood Cliffs, New Jersey 07632

IBM, RT PC, and RT are a registered trademarks, and AIX,
RISC System/6000, and SNA 3270 are trademarks, of
International Business Machines Corporation.

Sun0OS, Sun3, and Sun4 are trademarks of Sun Microsystems,
Inc.

MS-DOS is a trademark of Microsoft, Inc.

UNIX is a registered trademark of UNIX System Laboratories,
Inc. in the U.S. and other countries.

ADA is a registered trademark of the U.S. Government, ADA
Joint Program Office.

VMS is a trademark of Digital Equipment Corporation.
Smalltalk-80 is a trademark of ParcPlace Systems, Inc.
NeXT is a trademark of NeXT, Inc.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 21

ISBN 0-13-389537-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Prentice Hall Series In Innovative Technology

Dennis R. Allison, David J. Farber, and Bruce D. Shriver Series Advisors

Johnson Superscalar Microprocessor Design

Kane MIPS RISC Architecture

Rose The Open Book: A Practical Perspective on OSI

Rose The Simple Book: An Introduction to Management of TCP/IP-based
internets

Shapiro A C+ + Toolkit

Slater Microprocessor-Based Design

Strom, et al. Hermes: A Language for Distributed Computing

Wirfs-Brock, Wilkerson, and Weiner Designing Object-Oriented Software

Foreword

Distributed computing is significantly changing the computer systems land-
scape. Users require increasingly complex and sophisticated systems that
include multiple communicating applications distributed over corporate, na-
tional, and international networks. Many factors contribute to the acceler-
ated growth of distributed computing and the resulting computing paradigm
shift—performance, economics, the need to interconnect previously stan-
dalone systems, and the geographical dispersion of many organizations.
Modern operating systems, such as Mach, have been developed to support
the need for multi-application systems.

Most programming languages, however, are still designed for standalone ap-
plications. Therefore, multi-application systems designers and developers are
forced to interact with the operating system. They must deal not only with
programming language concepts such as typed variables and procedures,
but also with communications and operating system concepts such as mem-
ory regions, address spaces, and connections. They must understand how
variables are represented in the memory of each system, the multitasking,
synchronization, and communications models of the different operating sys-
tems and their programming interface, how to lay out processes and data
to optimize performance, and how to recover from systems and communi-
cations failures. The resulting programs not only require special expertise
to produce but are also lengthy, difficult to maintain, and much too closely
tied to a particular system environment to be portable.

The Hermes project, led by Rob Strom at IBM’s T. J. Watson Research
Center, has made substantial progress toward fulfilling a vision of a simple
distributed computational model and a programming language, compiler,
and integrated tool set supporting this model. Their work began in the
early 1980’s and led to the development of the Network Implementation
Language (NIL) in 1982. They have made important contributions to the
discipline of designing and implementing complex, distributed systems as
well as to programming language theory and practice. Among their impres-
sive results are: the development of the typestate mechanism; the efficient,
transparent recovery technique called optimistic recovery; and the develop-
ment of new approaches to program reuse and optimization. Such contribu-

X Foreword

tions, manifested in real implementations as well as in theory, have added
to our understanding of how to create more reliable and portable programs.

The Hermes language offers a novel approach to controlling the complexity
of distributed programming. It incorporates a computational model integrat-
ing computation, communication, and system configuration within a simple
high level language. Implementations of Hermes map this high level model
down to the specific features available on the target hardware and operating
system and include optimizing transformations to make more efficient use
of system resources. The burden of dealing with the details of particular
systems and of optimizing performance is thus shifted from the programmer
to the designer of the compiler and run-time environment.

The Hermes work has been guided throughout by some well-known and
widely accepted principles of language design, including modularity, ab-
straction, and orthogonality. Part of what differentiates Hermes from other
programming languages is the disciplined and uncompromising manner in
which these principles have been applied. Whenever conflicting language and
system design issues were encountered, the Hermes team opted for adhering
to these fundamental principles.

For example, modularity is the notion that programs should be constructed
by composing modules that interact in well-defined and easily understood
ways. While many languages allow programs to be constructed in this man-
ner, Hermes is unique in the extent to which these interfacing requirements
are enforced. In fact, it is impossible for one Hermes module to corrupt an-
other, even without address space boundaries or other firewalls commonly
used to provide this protection.

As another example, the notions of abstraction and information hiding in
Hermes are addressed not only by providing the programmer with the means
to create abstractions, but also by adhering strictly to the ideal that details
of machines, operating systems, and operating environment should be of
no concern to the programmer. For instance, in Hermes, communication is
performed by making calls and passing typed ob jects, not by building session
or datagram connections, passing buffers and RPC handles, and handling
flow control and timeouts.

The Hermes approach advances compiler technology to produce efficient

Foreword xi

code for complex architectures and the run-time environments provided by
different operating systems. Many of these problems have yet to be addressed
fully; nevertheless, Hermes has much to offer from a practical perspective.
Programming teams will find that the strict checking of module interfaces
will greatly ease the task of integrating separately written program modules.
Individual programmers will find that the high-level abstractions offered in
Hermes can greatly simplify many of their programming tasks. Program
development time will be reduced because of the many type and typestate
errors detected by the Hermes compiler—errors that in other languages lead
to run-time errors like memory violations and are often extremely difficult
to track down.

This book is a combination tutorial and reference manual, full of rich insights
about distributed systems software technology. It integrates many contribu-
tions of the Hermes team in the areas of language design, program analysis,
compilation, and distributed computing and illustrates how the application
of what they have learned can yield startling benefits for the programmers
who design, implement, and maintain the growing body of distributed ap-
plications code. It is definitely worthwhile reading for those interested in
complex systems, be they designers, developers, teachers, students, or re-
searchers.

Bruce Shriver
Professor, University of Southwestern Louisiana

Preface

This book is a tutorial and a reference manual for the Hermes programming
language.

What is Hermes

Hermes reflects our vision of how the software systems of the future should be
developed. In our view, stand-alone applications will evolve towards systems
composed of interacting applications. System-dependent, “low-level hack-
ing” approaches to building complex software systems will be replaced by
newer technologies in which details of operating system, communications
protocols, and machine architecture are hidden from the programmer. Com-
piler techniques will improve to the point where programmers will not explic-
itly manage the distinctions between main memory and secondary storage,
between local and remote procedures, between shared memory and message
communications. Programmers will program to a simplified abstract ma-
chine; compilers will map this abstraction to different and changing physical
configurations. Programmers will be concerned with functionality and mod-
ularity; compilers will be concerned with architecture and performance.

Hermes is an initial realization of this vision. It is a secure, representation-
independent, programming language. It supports a software engineering
methodology for developing complex systems by incorporating a simple,
powerful dynamic distributed process model within a high-level language.

Hermes has a number of fundamental principles. Many of them appear to
be widely accepted truisms. However, Hermes applies these principles more
extensively than other languages in common use today.

e Modularity: Systems should be built from small, autonomously ez-
ecuting modules whose interfaces can be written down and enforced.
Hermes modules are processes, encapsulating both data and an asso-
ciated program. Passive objects are a special case of processes: their

xiii

Xiv

Preface

program consists of a single loop waiting for calls. A running system
will contain many (hundreds or thousands) of autonomously executing
processes. Because Hermes must support a multi-application environ-
ment, we enforce protection (what Hoare calls security[Hoa81]) at the
granularity of a module. In other languages, unpredictable side effects
can occur as a result of unchecked “erroneous” programs (e.g. accessing
an undefined value in Ada) or as a result of misuse of “unsafe” pro-
gramming constructs (e.g. untraced references in Modula-3[CDG*89]).
In these languages, such side effects are tolerated because it is assumed
that each separate application has been put in a separate “address
space” by the operating system. In Hermes, there is no unsafe sub-
set. A new compile-time checking technique called typestate checking
guarantees that each module is protected as if it were in its own ad-
dress space, even though the implementation can put many applica-
tions’ processes in the same address space. Thus Hermes provides a
finer granularity of protection within an application and more efficient
communication across applications.

Uniformity: Modules interact the same way whether they are local
or remote, and whether or not they belong to the same application.
In Hermes, modules interact by sending messages or by making calls.
There is no sharing, and no aliasing. We believe that the possibility for
interference in shared memory systems inhibits modularity and ana-
lyzability. Another consequence of uniformity in Hermes is that there
is one kind of module (process), as opposed to Ada’s tasks, packages
and procedures.

Abstraction: The high-level language should hide as many low-level
details of the underlying implementation as possible. Programs should
be easy for people to read and for compilers to check and optimize.
Although many people pay lip-service to this principle, it conflicts
with another widely accepted principle—that of performance trans-
parency. Performance transparency means that the cost of the un-
derlying implementation can be estimated by looking at the source
code. Performance transparency implies, for example, that the pro-
grammer should know (and be able to control) whether an n-byte
data structure is being passed by reference (constant-time cost) or by
value (order n cost). This principle underlies the design of C, Pas-
cal, and the Modula family of languages. In Hermes, we intentionally
give up performance transparency in favor of abstraction. We do this

Preface XV

for reasons of simplicity, portability, and efficiency. Hermes program-
mers see a simpler model—serial processes, persistent variables, and
reliable communication. They do not see the machine architecture,
the storage hierarchy, the physical representation of data, the operat-
ing system, or the communications systems. The Hermes programmer
gives up the ability to write an exotic program with multithreading,
aliased variables, and other properties which make programs hard to
understand. In exchange, the compiler gains the ability to detect the
possibility of applying an optimization which may introduce aliasing
and multithreading under the covers. Our conjecture is that by provid-
ing a simpler high-level model in which programmers may not write
“tricky” code, and a library of optimizations which reintroduce the
“tricks” into the implementation, we will improve reliability, enable
reuse of optimizations in any program using the optimized constructs,
and do as well or better in efficiency.

Who should read this book

The Hermes language should be interesting to system designers, system de-
velopers, computer science researchers, and teachers of programming lan-
guage design, program analysis, software engineering, operating systems and
distributed systems.

o System developers will find that hiding the underlying system technol-
ogy allows them to write much shorter and simpler programs, to get
them right faster, and to port them without change across different en-
vironments. They will find the modularity provided by processes, and
the separately compiled type and typestate-checked interfaces valu-
able for managing large programming efforts. They will appreciate the
automatic error detection provided by typestate checking and the fact
that they will no longer need to examine core dumps.

e System designers will find that they can directly implement and exe-
cute layered architectures in Hermes by using a process for each com-
ponent and an (input, output) port pair for for each inter-process
connection, without paying a performance penalty.

XVi Preface

o Teachers of distributed systems will find in Hermes a clean system-
independent model for teaching fundamental operating systems con-
cepts such as processes, capabilities, inter-process communication, con-
currency and synchronization, separation of policy from mechanism,
and others. Complex system services, such as window managers, spool-
ers, and logon shells can be coded very compactly in Hermes.

e Computer science teachers and researchers interested in program anal-
ysis and optimization techniques will find that the high level of ab-
straction of Hermes provides an excellent framework for exploring of
novel program optimization techniques that exploit distributed con-
figurations: parallelization, replication of data and processes, remote
evaluation, process migration, and others. Those interested in software
reuse will find in the program datatype a fertile ground for studying
and unifying techniques such as generics and inheritance, as well as
exploring new approaches to reuse: reusing arbitrary program frag-
ments, generating programs from program templates or from other
programs by substituting syntactically and semantically well-formed
program components, generating debugger drivers, and others.

How can I get a copy of Hermes?

Currently we will give Hermes for free to anyone who wants to use it for
non-commercial purposes. Mail the tear-out postcard at the back of this
book to us and we’ll tell you how to obtain Hermes. Currently, the system
is implemented on several UNIX platforms, including: Sun 3 and 4, NeXT
machines, and IBM RT PC and Risc System/6000. Future plans include
porting Hermes to run on Mach. Other related software systems include the
Optimistic Recovery Layer we are developing on Mach to provide transpar-
ent recovery to general applications without the need for transactions, and
the Concert/C extensions to the C programming language for supporting a
Hermes-like process model in C.

Preface Xxvii

Organization of this Book

This book contains a tutorial, a reference manual, and appendices.

The tutorial introduces you to Hermes by guiding you through a set of ex-
amples. We begin with a simple program which outputs “Hello world,” and
continue through more complex examples, ending with a window system. We
then discuss additional useful features of Hermes, such as typestate analy-
sis. We assume that you have some experience writing application programs
in a procedural language, such as C, Pascal, or Ada. We will highlight the
differences between programming in Hermes and programming in other lan-
guages, so you will get a feeling for “idiomatic Hermes.” At the end of the
tutorial, you will know the basic vocabulary of Hermes. You will be able to
write some Hermes programs by imitating the examples. You will be able
to compare Hermes to other languages. But you will not know the precise
rules of Hermes—these are covered in the reference manual.

The reference manual is more formal than the tutorial. We also give examples
in the reference manual, but with a different purpose. The examples in the
reference manual illustrate the language rules. They highlight the difference
between legal and illegal programs rather than illustrate “typical” programs.

The appendices are the most formal. They contain the rules of Hermes in
tabular form. They are produced from the same machine-readable files that
are used to produce the compiler itself.

This document does not describe how to use any of the existing Hermes im-
plementations, nor does it describe their idiosyncrasies. Such information is
to be found in the Hermes Users Guide distributed with the implementation.

Acknowledgments

Hermes derives from earlier work on the NIL language at IBM’s T.J. Watson
Research Center. The success of the NIL prototype made it possible to
continue our work with Hermes. We acknowledge the contribution of Francis
Parr to the early language design of NIL, and to the first experimental

XViii Preface

prototype. Nagui Halim and John Pershing, Jr. were responsible for much
of the implementation of the NIL compiler and run-time environment. They
also wrote significant components of the communication applications used to
prove the practicality of NIL. Mike Conner provided important managerial
and moral support. Other contributors to the NIL prototype include Dan
Milch and Jim Mclnerney.

Van Nguyen made important contributions to the Hermes implementation
and to earlier drafts of the manual. Joel Auslander implemented much of
the Hermes external interface and contributed useful programming tools.

We thank Tom Marlowe for his numerous, extensive, and timely comments
on our manuscript. Other readers who contributed valuable comments in-
clude German Goldszmidt, Willard Korfhage, Jim Russell, and Peter Weg-

ner.

Finally, we thank IBM and our colleagues for their support and for providing
the intellectual environment from which we profit in untold ways each day.

Contents

Foreword

Preface

I Tutorial

1 Introduction to Hermes

1.1 Introduction
1.2 Getting Started—A Simple Hermes Program
1.3 A Second Program
1.4 Putting Processes Together
1.5 Declarations and Definitions

1.5.1 Declarations

1.5.2 Definitions
1.6 A Simple Server

2 A Miniature System

2.1 Requirements
22 Design.
2.3 Imterfaces
2.4 Window System Shell
2.5 Front-end Process

2.6 Tokenizer Procedure
2.7 The Window Manager
2.71 Definitions
2.7.2 Window Manager Skeleton
2.7.3 Refocusing and Writing Output
2.7.4 Dispatching Lines to a Particular Window
2.7.5 Creating and Killing Windows
2.8 Creating a Window Application
2.8.1 Application Builder
2.8.2 Adapter and Quit Dispatcher
29 Summary

3 Type and Typestate Checking

ix

XV

L1
14
21
22
25
30

37
37
38
40
44
45
49
51
51
53
54
35
57
58
59
62
64

67

vi Contents

4 Additional Hermes Constructs

4.1
4.2
4.3
4.4

Expression Blocks
Send oL

5 Hermes Research—Past, Present, and Future

5.1
5.2
5.3

Early Research: the NIL language
A New View of High Level Languages
Recent Research

II Hermes Reference Manual

6 Introduction

7 Lexical and Syntactic Rules

8 Resolution

8.1

8.2
8.3
8.4
8.5
8.6

Variable Names.
8.1.1 Base Variables
812 Component Names

Exception Names. 7
Exit Names 7

9 Type Checking and Inference

10 Typestate Checking

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Overview
Syntax of Typestates _
Formal Typestates 7
Valid Typestates 7
Coercions 7
Comstants 7
The Typestate Analysis Algorithm
How to Use the Tables. ="
Typestate Errors 7]

73
73
74
76
81

85
85
89
91

93
95
99

101
102
102
103
104
105
105
106
106

109

Contents vii

11 Hermes Operations 129
11.1 Ubiquitous Operations 129
11.2 The Depletion Exception 131
11.3 Control Flow Operations 132
11.4 Scalar Types « .« o i i v i 139

11.4.1 Scalar Type Definitions 140
11.4.2 Scalar Operations 143
11.5 Record Types oo 147
11.5.1 Record Type Family 147
11.5.2 Record Operations 148
11.6 Table Types 148
11.6.1 Table Type Family 148
11.6.2 Table Operations 150
11.7 Variant Types oo 160
11.7.1 Variant Type Family 160
11.8 Communication Types 165
11.8.1 Input Port, Output Port, Callmessage Type Families 165
11.8.2 Communication Operations 168
11.9 Program Type = : o : s ¢ 65 a8 s © 3 0 5 8 s @ 3 % o5 5 @ 175
11.9.1 Program Operations 175
1110 Polymotph Types & : 5 ¢« sc sa s 6 s 8 : 9 s w58 8@ o8 5 & 182
11.10.1 Polymorph Type Family 182
11.10.2 Polymorph Operations 183
1111 Constraints « : s s s 0 ¢ w2 58 2 & 3 2 ¢ 85 53 v 68 3 5 3 186

A Hermes Concrete Syntax 191
Al Lexical Rules 192
A2 SyntacticRules., 196

B Hermes Operations 211
B.1 Operation Descriptions 211

B.1.1 Description Header 211
B:l2 TypeRules: : « o 2 v v v s w s ms ¢ 26 aom s w5 a s 212
B.1.3 Preconditions . . . « « v« % 2 & ¢ & ¢ voe 5w s ow o2 oa s 214
B.1.4 Postconditions 214
B.1.5 Special Rules . : o s o 2 55 0 5 2 ¢ s s %5 5 5 5 ¢ 215
B.1.6 Operation Semantics 215
B.2 TypeClasses 216

B.3 Inference Functions 217

Contents

viii
B.4 Precondition Functions
B.4.1 Typestate Preconditions
B.4.2 Context Preconditions
B.4.3 Conditional Exceptions
B.5 Postcondition Functions
B.6 Operation Descriptions
C Predefined Module
References
Index

257

275

279

