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Preface

CASC 2001 continues a tradition — started in 1998 — of international con-
ferences on the latest advances in the application of computer algebra systems
(CASs) to the solution of various problems in scientific computing. The three ear-
lier conferences in this sequence, CASC’98, CASC’99, and CASC 2000, were held,
respectively, in St. Petersburg, Russia, in Munich, Germany, and in Samarkand,
Uzbekistan, and proved to be very successful.

We have to thank the program committee, listed overleaf, for a tremendous
job in soliciting and providing reviews for the submitted papers. There were more
than three reviews per submission on average. The result of this job is reflected in
the present volume, which contains revised versions of the accepted papers. The
collection of papers included in the proceedings covers various topics of computer
algebra methods, algorithms and software applied to scientific computing.

In particular, five papers are devoted to the implementation of the analysis
of involutive systems with the aid of CASs. The specific examples include new
efficient algorithms for the computation of Janet bases for monomial ideals,
involutive division, involutive reduction method, etc.

A number of papers deal with application of CASs for obtaining and vali-
dating new exact solutions to initial and boundary value problems for partial
differential equations in mathematical physics. Several papers show how CASs
can be used to obtain analytic solutions of initial and boundary value problems
for ordinary differential equations and for studying their properties.

Several papers present the application of CASs to the solution of differential
geometry tasks. A number of papers deals with group and Lie symmetry analysis
as applied, in particular, to equations governing plane motions of a viscous heat-
conducting gas.

There are also papers devoted to problems that are typical CA applications:
polynomial ideals, polynomial algebra, and quantifier elimination.

A number of papers is aimed in a new interesting direction for the develop-
ment of applied CAS packages: the integration of object-oriented programming
in CAS environments with the capabilities of Java.

A novel feature of this conference is an enhanced emphasis on engineer-
ing applications of computer algebra. In particular, such applied problems are
considered as the modelling of shape memory metal alloys, the stability of a
satellite with a solar sail, reliability problems in aerospace systems, automatic



VI

motion planning of an automobile or aircraft within moving traffic, detection of
all singular positions of planar mechanisms, etc.

The invited lecture by R. Maeder shows in detail how MATHEMATICA routines
can be moved to and efficiently be implemented in a parallel environment.

The CASC 2001 workshop was supported financially by a generous grant
from the Deutsche Forschungsgemeinschaft (DFG) and Visual Analysis AG. We
are grateful to W. Meixner for his technical help in the preparation of the camera
ready manuscript for this volume. We also thank the publisher, Springer Verlag,
for their support in preparing these proceedings.

Our particular thanks are due to the members of the local organizing commit-
tee in Konstanz who have ably handled local arrangements in this particularly
pleasant location in the very South of Germany.

Munich, July 2001

V.G. Génzha
E.W. Mayr
E.V. Vorozhtsov
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Jets. A MAprLE-Package for Formal Differential
Geometry

Mohamed Barakat

Lehrstuhl B fiir Mathematik, RWTH-Aachen, Templergraben 64
D-52062 Aachen, Germany
mohamed .barakat@post.rwth-aachen.de
http://wuwb.math.rwth-aachen.de

Abstract. The MAPLE-package jets was first designed to be an exten-
sion of the package desolv. In the current stage it became an independent
package going beyond symmetries to handle different aspects of formal
differential geometry, including some important parts of the variational
bicomplex. We demonstrate this by computing the set of all Hamiltonian
structures of a order at most 3, which are compatible with D,. This set
includes among others the famous KdV-operator D,.. + %uDA,- + %u,.

1 Introduction

The MAPLE-package jets, originally an extension of the package desolv! adding
to it the facility of computing generalized symmetries of differential equations, is
at the current stage an independent package going beyond symmetries to handle
different aspects of what I. M. Gel’fand, in his 1970 address to the International
Congress in Nice, called “formal differential geometry”. Important parts of the
variational bicomplex, as playing a crucial role in the formal theory, are imple-
mented in jets. Most of the implementation of the variational aspects in jets,
such as variational symmetries, higher Euler operators, homotopy operators and
conservation laws, was done by GEHRT HARTJEN as part of his diploma thesis
[Har]. As dual to functional forms and the vertical derivative also functional
multi-vectors and the Nijenhuis-Schouten bracket are also implemented in jets,
enabling one to handle Hamiltonian systems of evolution equations and non-
linear integrable systems. The package adds to MAPLE the important feature
of dealing with jet calculus, a thing which is still missing in modern computer
algebra systems. Almost every formula appearing in [Olv] can now be computed
using jets.

2 Hamiltonian Structures and the Nijenhuis-Schouten
Bracket

As mentioned in the abstract, the aim of this paper is to demonstrate a non-
trivial application of the package jets by computing the set of all Hamiltonian

! desolv was written by Khai Vu and Colin McIntosh. jets still uses desolv to solve
linear PDE systems.
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structures of a order at most 3, which are compatible with D,. This is done in
section 3. To this end we define the notion of functional multi-vectors, Hamilto-
nian structures and the Nijenhuis-Schouten bracket. The notions used in sequel
are standard and can be found in [Olv]. Further details are found in [Bar].

Let £ — M be afibred manifold in p independent variables (/) = (2!, .. ..2")
and ¢ dependent variables (u®) = (u',...,u?). By Joo(E) — M we denote the
infinite jet bundle having the jet variables (x, u§) as coordinates, where .J is an
arbitrary multi-index. By A we denote the space of differential expressions over
E, i.e. smooth real-valued functions of finitely many arbitrary jet variables. By
V! we denote the space of evolutionary vector fields, or equivalently the space of
characteristics over a jet bundle. This space can be identified with the Cartesian
power A?. Further we define locally F° := A/Div(AP) and call it the space of
functionals®. By F! we denote the F0-dual space of V'. We can also identify it
with A% Further let F” (resp. V™) denote the space of functional n-forms (resp.
n-vectors).

We first note the following two basic formulas. The first one relates the pro-
longation of an evolutionary vector field and the Fréchet derivative

prv(L) =DLQ, (1)
where Q@ = (Q',...,Q9)" is a characteristic, v = Q 33 and evolutionary
vector field, prvg = D;Q%-2- (prolongation formula) and D, = (25D,

Q ou§ 8 Ouy
. (;’1 fa D) (Fréchet derivative). The proof follows immediately from the prolon-
J

gation formula and the definition of the Fréchet derivative. The second formula
is the standard LEIBNIZ rule

prv(L-P)=prvL-P+L- -prvP (2)

where v is a generalized vector field and L, P are arbitrary differential expression.
We still need the following lemma.

Lemma 1. For a differential operator D = P'D, (P? € A) and differential
function T € A, we have the following Leibniz rule:

prvo(DT) = prvg(D)T + Dprvg(T), (3)

or equivalently by (1)
Dpr(Q) = prvg(D)T + DD Q). (4)
Proor.  [Olv], Formula (5.38). O

Definition 1 (Adjoint operator). The formal adjoint operator of a matriz
differential operator D = (P('XJBD,]) 15 defined by

D* = ((-)¥Dp;PL).

> DivP = D;P', where P = (P!,.. ., P?)and D; = D,;
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Definition 2 (Euler operator). For L € A the operator
E(L) := D1 (1) ()
15 called the EULER operator.

Lemma 2 ([Olv], Formula (4.15)). A Lagrangian L € A transforms in-
finitesimally according to the rule

LyL = prvL + LDiv(¢), (6)

where v = €524+ n*52 is a generalized vector field®.

Proor. [Olv], Theorem 4.12. a

Corollary 1 (Lie derivative of functionals). For a Lagrangian L viewed as
an element of F°, i.e. as a functional O-form, the Lie derivative L, satisfies

LyL=prvgL=E(L)- Q. (7)
Proor.  The following are identities between functionals. For a generalized
vector field v with characteristic Q)
(6) .
LyL = prvL + LDiv(§)
= prvoL + &' D;L + LD;¢*
= prvgL + Div(L¢)
= prvglL
@)
=1-Dr(Q)
=Dr(1)-Q
(5)
Y EL)Q
O

Definition 3 (Lie derivative of vector fields). Let v be a generalized vector
field and R a characteristic, i.e. R € V'. Define the Lie derivative of R with
respect to v by
Ly(R) = prvgR — prvrQ
Q prvoR — DgR, (8)
where @) is the characteristic of v.

Proposition 1 (Lie derivative of functional 1-forms). For the Lie deriva-
tive of a source form A € F! the following two statements are equivalent:

% [Olv] proves this for point vector fields only. The above Lie derivative coincides with
the notion of projected Lie derivative £ introduced in [And], Chapter 3.
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(i) A transforms infinitesimally according to
LyoA=prvoA+DjA. (9)
(ii) Ly, satisfies'the following Leibniz rule for an arbitrary characteristic R
Lvo(A-R)=Ly,A-R+A-Ly,R. (10)

This is an identity of functionals, i.e. the left and right hand sides are equal
up to local divergence.

Proor.  Both directions follow from the following equalities:

E(Lvy(A-R)) —E(A-LyyR)

2 E(prvo(A-R)) —E(A- Ly R)

(
LY E(prvgA- R+ A-prvoR) — E(A- (prvoR — DoR))
(
(

= E perA~R+A-DQR)
= E((prvoA +DyA) - R).

O
Remark 1. The identity of functionals
LyoA-R=prvgA-R+ A-prvgQ, (11)
which is part of the proof, appears as formula (4.2) in [GDo2].
Lemma 3. The following identity holds for a general K : F' — V!
(prv.(K)A)* X = (prv.(K*)X)* A (12)
Proor.  For an arbitrary characteristic S
E(S - ((prv.(K)A)" X — (prv.(K*)X)*4))
=E(prvs(K)A- 2 —prvg(K*)X - A)
=E(prvs(K)A- X — ¥ - prvs(K)A)
=0.
O

Definition 4 (Nijenhuis-Schouten bracket). For D,€ € V? the Nigenhuis-
Schouten bracket [D,E] : F' x F' x F1 — FO is defined as follows:

[D,E](A1, Az, Ag) := Lpa, Ay - EA3 + Lea, Ay - DA; + (cycle),  (13)

where the word (cycle) means summation over all cyclic permutations of the
indices 1,2,3. D and & are viewed as differential operators from F' into V'.
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This definition is a generalisation of the classical N ijenhuis-Schouten bracket
from differential geometry, which is one of its advantages. It appears in [GDo2],
Formula (3.3). Nevertheless there are two major drawbacks of this definition. The
first one is that the right hand side is a functional, so it has no normal form.
This means that checking the vanishing of the bracket or extracting conditions
for its vanishing is not a direct procedure. The second one is that one needs
more than total differentials of the A;’s, meaning that we cannot compute with
general A;’s, complicating the check of vanishing of the bracket. Besides, from
this definition we do not see that the bracket of two 2-vectors is a (3,0)-tensor,
even a 3-vector. In the following we want to make use of the freedom of adding
divergences to circumvent these drawbacks. The following formula cures both
drawbacks.

Proposition 2 (Nijenhuis-Schouten bracket). For D,& € V? the following
formula is an equivalent definition of the Nijenhuis-Schouten bracket [D, &]
[D,E1(Q) = prvpa(€) — prvp.()A + (prvp.(£)A)* +
Prvea(D) — prve.(D)A + (prve.(D)A)*. (14)
Proor.
E([D, €](A1, 42, A3))
= E(Lpa,A2-EA3) + E(Lea, As - DA;3) + (cycle)
e E(prvpa, As - EA3) + E(A, - prvea, (DA)) +
E(prvea, Ay - DA3) + E(A, - Prvpa,(EA1)) +
(cycle)
= E(prvpa,4ds-EA3) +E(A, - Prvea, (D)A;) + E(A, “Dprvea, Ay) +
E(prvea, Ay - DA3) + E(A, - Prvpa, (£)A1) + E(As - Eprvpa, Ay) +
(cycle)
E(prvpa, Ay - £A43)
E(prvea, As - DA3)
(cycle)
= E(prvpa,As-EA3) +E(A, - pr Veas (D)Ar) — E(prvea, A, -DA,) +
E(prvea, Ay - DA3) + E(A, - Prvpa,(E)Ar1) — E(prvpa, Ay -EA) +
(cycle)
I E(A - prvpa, (6)As + Ar - prvpa, (€)As + A, - prvpa, (£)A;
+ A3 prvea, (D)Az + A1 - prvea,(D)As + Ay - prvea, (D)A,)
= E(A3-prvpa,(£)As —prvpa, (E)A; - Az + (prvp.(E)AN)* Ay - Ay
+As -prvea, (D)As — prvea,(D)A; - As + (prve.(D)A|)* Ay - Ay)
= E(43-(prvpa,(€) — prvp.(£)A; + (prvp.(E)A)*
+prvea, (D) —prve.(D)A; + (prve.(D)A1))A,).

+ E(A.
+ E(A.

L}

b

“prvea,(D)A;) — E(DA, - pPrvea, Ay) +
“Prvpa,(€)A1) —E(EA, - prvpa,Ar) +

N

b
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Remark 2. The right hand side of the formula

(D, E](A1, Az, A3) (15)
= Ay -prvpa, (E)As + Ay - prvpa,(£)As + As - prvpa,(£)Ar
+As -prvea, (D)As + Ay - prvea,(D)As + Ay - prvea,(D)Aq,

which is part of the proof, appears as formula (7.30) in [Olv]. This formula is an
identity of functionals. This definition still has the first drawback, that trivial
functionals do not in general vanish identically, but only up to local divergence.
The second drawback is eliminated and one can see the (3,0)-tensoriality of the
expression. But due to the first drawback it still not completely easy to see that
this expression is in fact a 3-vector. If we instead use Proposition 2 to define the
bracket, these properties follow immediately:

Lemma 4. The Nijenhuis-Schouten bracket satisfies the following properties:

(i) [D,€&] is a 3-vector, i.e. is totally skew-adjoint:

(a) [D,E)(A) is a total differential operator in the source form A.
(b) [D,E](AQ) is skew-adjoint.

(c) [D,E)(A)E = —[D,E)(X)A is skew-adjoint.

(ii) [D,€] =[€,D].

Proor. (i.b) follows immediately from the skew-adjointness of D,& and for
(i.c) we further need to notice that prvp.(£)A = (prv.(€)A)D and (12) for
functional bi-vectors i.e. skew-adjoint operators K : F* — V. O

Definition 5 (Poisson bracket). Let D : F' — V' be a differential operator.
The Poisson bracket of two functionals L, P is defined by

{L,P} = E(L) - DE(P), (16)
which is again a functional.

Definition 6 (Hamiltonian structure). A differential operator D : F' — V!
is called Hamiltonian if its Poisson bracket (16) is skew-symmetric

{L,P}=—-{P,L}, (17)
and satisfies the Jacobi identity
{{L,P},R}+ {{P,R},L} + {{R,P},L} =0, (18)
for all functionals L, P, R. These are identities between functionals.

Proposition 3. A differential operator D is Hamiltonian, if and only if D is a
2-vector satisfying [D,D] = 0.



