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ABSTRACT

The essential features and new developments of the s-channel theory of super-
conductivity are presented. Applications to the usR and Hall number experiments
are analyzed. The relations between small coherence length, Bose-Einstein conden-
sation and high T, are emphasized.

1. INTRODUCTION

In this talk | wish to discuss a new phenomenological theory of high temperature
superconductivity, which has been developed in collaboration with R. Friedberg and
H. C. Ren. Our starting point is the experimental observation of a small coherence
length ¢ ~ 104 in high T. superconductors’2. This is in contrast with a much
larger £ in the usual cold superconductor, typically = 10%A for type | and ~ 1024
for type Il. In addition, it is known that in all these superconductors the magnetic
flux carried by each vortex filament is 27fic/2e, showing the existence of a pairing
state.

A small coherence length £ in the high T, superconductors indicates that the
pairing between electrons, or holes, is reasonably localized in the coordinate space.
Hence, the pair-state can be approximated by a phenomenological local boson field
#(7), whose mass my is =~ 2m, and whose elementary charge unit is 2e, where
m, and e are the mass and charge of an electron. It follows then that the transition

2e = ¢ — 2e (1.1)
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4 The s-Channel Theory of Superconductivity

must occur, in which ¢ denotes either an electron or a hole; furthermore, the
localization of ¢ implies that phenomena at distances larger than the physical
extension of ¢ (which is < &) are insensitive to the interior of ¢. Since £ is of
the same order as the scale of a lattice unit cell, it becomes possible to develop a
phenomenological theory of superconductivity based only on the local character of

.

Of course, physics at large does depend on several overall properties: the spin
of ¢, the stability of an individual ¢-quantum, the isotropicity and homogeneity
(or their absence) of the space containing ¢ and so on. The situation is analogous
to that in particle physics: the smallness of the radii of pions, p-mesons, kaons, ---
makes it possible for us to handle much of the dynamics without any reference to
their internal structure, such as quark-antiquark pairs or bag models. Hence, the
origin of their formation becomes a problem separate from the description of their
mechanics. An important ingredient in this type of phenomenological approach is the
selection of the basic interaction Hamiltonian that describes the underlying dominant
process. In the usual low-temperature superconductors, the large £-value makes
the corresponding pairing state ¢ too extended and ill-defined in the coordinate
space; therefore, (11) does not play an important role. Instead, the BCS theory of
superconductivity® is based on the emission and absorption of phonons,

2e — 2e+ phonon — 2e. (1.2)

In the language of particle physics, (1.1) is an s-channel process, while (1.2) is t-
channel. The BCS theory may be called the t-channel theory, and the model that
is based on (1.1) the s-channel theory.®’

The use of a boson field for the superfluidity of Liquid Hell has had a long
history. However, there are some major differences in the following application to

" (high temperature superconductors:
g p

1. The ¢-quantum is charged, carrving 2e, while the helium atom is neutral.

2. We assume each individual ¢-quantum to be unstable, with 2y as its
excitation energy.

Jn any microscopic attempt to construct ¢ out of 2e, because of the short-range

Coulomb repulsion it is very difficult to have ¢ stable. The explicit assumption of
instability bypasses this difficulty; it also makes the present boson-fermion model
different fiom the theory of Schafroth®? and others.
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In the rest frame of a single ¢-quantum (in isolation), the decay

¢ — 2e (1.3)
occurs, in which each e carries an energy

k2

2m,

= V.

Consequently, in a large system, there are macroscopic numbers of both bosons (the
#-quanta) and fermions (electrons or holes), distributed according to the principles
of statistical mechanics.

At temperature T' < T, there is always a macroscopic distribution of zero
momentum bosons co-existing with a Fermi distribution of electrons (or holes).
Take the simple example of zero temperature: Let e be the Fermi energy. When
ep = v, the decay ¢ — 2e cannot take place because of the exciusion principle;
therefore, the bosons are present. Even when er < v, there is still a macroscopic
number of (virtual) zero momentum bosons in the form of a static coherent field
amplitude whose source is the fermion pairs. This then leads to the following
essential features of the s-channel model.

Below the critical temperature T, the long range order in the boson field
can always be described by its zero-momentum bosonic amplitude B, as in the
Bose-Einstein condensation (and therefore similar to liquid HelI). Because of the
transition (1.1), the zero-momentum of the boson in the condensate forces the two
e to have equal and opposite momenta, forming a Cooper pair. Therefore, the same
long range order B also applies to the Cooper pairs of the fermions. Furthermore,
as we shall see, the gap energy A of the fermion system is related to B by

A? = |gB[ (1.4)

where g is the coupling for ¢ — 2e.

Since in reality ¢ is a composite of 2e, when the average distance between
¢-quanta becomes less than the diameter of the composite the approximation of
treating each ¢ as a single boson breaks down. However, for densities not that
high, by representing the 2e-resonance as an independent ¢-field, we may convert
an otherwise strong interaction problem (which forms the resonance and exists at
small distances) to one that can be handled by perturbative series in weak coupling
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(i-e., the residual interaction at relatively larger distances). This enables us to give
a systematic analysis of such a theory; it also makes transparent the questions of

~ gauge invariance and symmetry breaking.

2. psR EXPERIMENTS

In the s-channel theory, the long-range order parameter B is due to Bose-

« Einstein condensation. Consequently, the phase transition can be of statistical origin,

in contrast to the usual BCS theory. As we shall see, the critical temperature T,

may then be much higher. Let us first examine the evidence supporting such a
picture.

Recently, Uemura et al.}® discovered that in all (high temperature) cupric su-

perconductors there is a universality law:

T, < p*/m* ' (2.1)

where p* is the number density of superconducting charge carriers and m* their
effective mass; the proportionality constant is the same for all materials, about

40°K to  4x10%cm™3/m,, (2.2)

“assuming each carrier bears a charge e. In the s-channel theory, the p* in the
uSR experiment!® should be interpreted as due to bosons of charge 2e; the pro-
portionality constant would then be reduced by a factor 4, and the experimentally
determined proportionality constant (2.2) becomes

40°K to  10®%m™3/m.. (2.3)

In these cupric superconductors, the charge carriers concentrate on the two -
dimensional CuQ, plane; their tunneling between these planes gives rise to the
three-dimensional character. The average separation ¢ between CuQO; planes is

approximately constant for different materials:
c = 64.

Let d be the average distance between neighboring bosons in the same Cu0;

plane; the boson density n; is
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= (&), (2.4)

At temperature T, each boson of mass m; has a thermal deBroglie wavelength
(r=1).

' 2r
1 5
Ar = T (2.5)

Setting -
m* = my and pf=m (2.6)

in (2.1), one sees that the product mT, is o< d~2; from the definition of A7, the
same product is also o< A72. Eliminating m,T. and using the usR experimental
data we arrive at

Or/d)ep = 2.8 (2.7)

for all cupric superconductors. Furthermore this value is independent of my .

In the s-channel theory, the palr state is represented phenomenologlcally by a
local field ¢ which can propagate !e!atlvely freely within each CuQ; plane; let m,
denote its mass in the CuO; plaﬁe. Because the ¢-quantum, in reality, is shaped
like a flat disc with its face parallel to the plane, this makes it difficult to tunnel
across different CuQO;. The effective boson mass Mj in the direction L to the
CuQO; plane should therefore be much larger than my : E

My>>my. (2.8)

The criterion of Bose-Einstein condensation for such a configuration is'?

#

ny = (/\%wc)"l ln(2Mbc2/cTC) (2.9)
and, because of (2.4), “

Ar/d = [In(2MysT,))E . (2.10)

When My — o0, or ¢ = o0, Ar/d becomes infinite and T. = 0; this gives the
well-known result that there is no Bose-Einstein condensation in two dimensions.
Because of the log-factor in (2.9)-(2.10), we expect that while Az is O(d), the
ratio Ar/d can be ~ 2.8, larger than 1.
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The theoretical formula (2.10) gives a slight variation of Ar/d, consistent with
experimental data, as shown in Figure 1.

3. BOSE-EINSTEIN CONDENSATION AND HIGH T,

An essential feature of the Bose-Einstein condensation is that the thermal de
Broglie length Ar should be comparable to the interparticle distance d, so that
the effect of symmetric statistics becomes manifest. It is instructive to put side
by side the ratios Ar/d for the ideal bosons, liquid Helium Il together with cupric

superconductors:

165 Hell (3.1)

1.377 ideal bosons
Ar/d = {
2.8 cupric superconductors.

In the BCS theory, T. depends sensitively on the interaction between electrons
and phonons (or other excitations); T. — 0 when there is no interaction. In the
Bose-Einstein condensation, T is determined by Ar ~ d, which is of statistical
origin and therefore can be much higher (T, exists even without interaction). In
the boson picture, on account of (2.5) and (3.1), we have

(mch)%d A constant. (3.2)

This product varies by only a factor less than, or ~ 2, from ideal boson to He,
and from He Il to cupric superconductors. For He, d = 3584, T. = 2.2°K and
mp = 8000m, , whereas for cupric superconductors the relevant m, is only a few
times me., the electron mass. (See (8.7) below.) Thus, between He and cupric
superconductors there is a change in my of three orders of magnitude. The relative
constancy of the product (mchﬁd naturally leads to a much higher T, for cupric
superconductors. In addition, if one could have smaller d, then T, would increase
accordingly. Of course, d must not be too small: otherwise, the pair-states overlap,
and the boson approximation breaks down (as in the case of cold superconductors,
because of their large coherence lengths).

4. A PROTOTYPE s-CHANNEL MODEL

As a prototype of the s-channel theory of superconductivity, we assume ¢ to be
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of spin 0 and that the space containing ¢ is a three-dimensional homogeneous and
isotropic continuum. For realistic applications!!!2, as emphasized before, a more
appropriate approximation of the latter would be the product of a two-dimensional
z,y-continuum (simulating the CuO, plane) and a discrete lattice of spacing ¢
along the z-direction. The two-dimensional layer character of CuO, planes helps
in the localization of the pair state in the z-direction, making the ¢-quantum disc-
shaped. The space that ¢ moves in becomes a three-dimensional continuum when
¢ — 0, but two-dimensional when ¢ — oo.

Here we consider an idealized isotropic and homogeneous space; the system
consisting of the local scalar field ¢ of mass M and the electron (or hole) field
Yo of mass m, with ¢ =1 or | denoting the spin. The Hamiltonian is (h = 1)

H = Hy+ H, (4.1)
in which the free Hamiltonian is

Ho = / [¢T(2Vo - 511—\,[— V) ¢+ 4} (—én_ V2) o | &r (4.2)

with the repeated spin index o summed over and t denoting the hermitian conju-
gate. The interaction H; can be simply

H = g/(¢f Wy %) + h.e.) d®r. (4.3)

Both ¢ and %, are the usual quantized field operators whose equal-time commu-
tator and anticommutator are

[6(7), $!(F")] = 8(F~7)
and

{$e(F), P57} = boar 8(F— 7).
The total particle number operator is defined to be
N = / (216 + 9! o) dr (4.4)

which commutes with H and is therefore conserved.

Expand the field operators in Fourier components inside a volume Q with
periodic boundary conditions:
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Vo) = Y O Hag e *7
'k .
and A (4.5)
o(7) = 3.t e
k

where the anticommutator {a;)a,a{.,’a,} = &g oor and the commutator

[b;,bfz,] = 8z, . Equation (4.3) can then be written as
_ 9N G =
Hy = ﬁzk [hag,zrag-5, +he] . (4.6)
p,

In (4.2), 2vp is the “bare” excitation energy of ¢ . Because of the interaction,
the “physical” (i.e., renormalized) excitation energy 2v in reaction (1.3) is given by

g’ 1
=2 = 47
v v + >0 . = (4.7)
where P denotes the principal value and
k2
= —. 4.8
we = 5 (4.8)

The decay width I of a ¢-quantum (in vacuum) is given by

M = (¢%/n)mt \/g ‘ (4.9)

5. GAP ENERGY
For T < T., the zero-momentum occupation number bg by of the boson field

¢ becomes macroscopic; hence, we may replace the operator by by a macroscopic
constant. Set in (4.5)

Q% bo = B = ¢ number
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and write

¢ = B+ (5.1)
where

b= S Qe (5.2)
k#0

In the following, we shall treat the effects of ¢, perturbatively. Let p be the
chemical potential. Introduce

H=H-uN = Ho+H (5.3)
where 22
Ho = Z{[2—M—+2(vo—p)]b;bi‘-+(wk—p)a£,aa;,d
k
+g[B‘aF,T a—F,l + B at_i,l af;,T ]} (54)
and
H, = t hc.)d® 5.5
1 =g [($1¥1%1+he)dr (5.5)

is the perturbation.

The zeroth-order Hamiltonian Hp is quadratic in field operators, and can there-
fore be readily diagonalized. Its fermion-dependent part can be written as a sum of
matrix products, each of the form:

t a-
(al':',r: a—E,l) <A - ( k_’j)
where A isa 2 X 2 matrix

4= (—(wk—u) gB* )

gB WE—p

Because of Fermi statistics, the two diagonal elements of A have opposite signs.
The eigenvalue Ep of A is determined by

E} —(we—p) = ¢*|BI*:

Ex = [(wx—pY+¢*|BP]E. (56)
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Thus, we establish the formula for the gap energy (1.4):

A’ = ¢*|BP.

6. THERMODYNAMICS

The zeroth-order grand canonical partition function is

-BH
Q = trace e Mo

whose logarithm is pQ2/kT, where § = (kT)™! and p is the pressure. By using
the diagonalized form of Hp, we find

p = —2wo—p)|BR+Q S (Ei+p—wi)
k
+2(BQ) 7S T in(1+ e7FPE)
k

(B In{1-expB[2u—2v — (K/2M)]}. (6.1)
k

In accordance with the general thermodynamical principle, at constant T' and u,
the function p should be a maximum with respect to any internal parameter, such
as | B|. Setting (9p/0| B |)u,r =0, we have

1

2
N 1
Vo—-[.l,-—ngTEk '-E—ktanh'éﬂEkZO.

By using (4.7), we may express the above formula in terms of the physical excitation
energy 2v of the ¢-quantum:

Q-Igzz ! vanh L gE 4+ P — (6.2
v—p = = — tanh = .
H 4 : E : 2 E v—wg |’ )
where P denotes the principal value, as before. The right-hand side is convergent
in the ultra-violet region since the theory is renormalizable. The particle density p
is given by (Op/0u)T,B , which yields
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p = 2|B|2+2Q‘lz[eﬂ(2V+(k’/2M)—2u) —1]
k
+Q71 S [E(1+e7PB) | et p—wi+ (Be—ptwr)e 5. (6.3)
k

From (6.2) and (6.3), 4 and |B |2 can be determined as functions of p and T.
(Equation (6.2) is similar to the gap equation in the BCS theory, and Eq. (6.3) is
the generalization of the density equation in the Bose-Einstein condensation.)

Regarding (6.1)-(6.3) as the zeroth approximation, one can develop a system-
atic expansion using ‘H; of (5.5) as the perturbation.

It is useful to introduce
py = (3717} (2mr)t, (6.4)

the fermionic density when the Fermi-energy equals v, with the excitation energy
of the ¢-quantum = 2v. For p << p,, one finds that the gap energy Ao at zero
temperature is related to the critical temperature T, by, as in the BCS theory,

Do
kT,

= e = 17639 (6.5)

where v = Euler's constant = 0.5772. For p >> p,

(6.6)

MkT, 3
27

Al = (2.612) 47 (
and (at any temperature T' < T.)

A(T) = ¢*|B(T)* = A

=(2)'] 61)

A detailed study of (6.2) and (6.3) shows that typical BCS and Bose-Einstein

formulas can be analytically connected within one single expression. In this way,

as in the Bose-Einstein condensation.

these two approaches become closely unified. The s-channel theory has an intrin-
sically simpler structure than the t-channel theory; this makes it possible to take
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a deductive approach, thereby rendering the analysis attractive on the pedagogical
fevel.

7. COHERENCE LENGTH

Consider the case of a scalar ¢ interacting with an electron (or hole) field ¥
through (1.1). Let A be the transverse electromagnetic field. Assume the space
to be isotropic and homogeneous. Define the phase-angle variable 8(z) by

#(z) = R(z)e"®) (7.1)

with R and 8 both hermitian. Write

1/)(27) - d)l(z)e%ie(z)
and

V(z) = A(z) - (2¢) Vé(z). (7.2)

At very low temperature we have R = B, the long-range order parameter (chosen to
be real). As shown in Ref. 7, the energy spectra for the transverse and longitudinal
modes of V are (in units of & =c=1)

wi(k) = (\g? + )1 (7.3)

and
wik) = [A52 + k%2 + (k2/2M )]} (7.4)

where k is the momentum (or wave nunber),
A72 = (2¢B*/M (7.5)
is the inverse square of the London length, €2 = 4n /137, v is the “sound” velocity

of the boson-fermion system and M the mass of .

Equations (7.3)-(7.4) also follow from general arguments: (i) At zero momen-
tum k = 0, as in the Higgs mechanism,!3 the energies of the three spin-components
of the massive vector field V become the same; i.e., they are all equal to the rest

mass my , given by

my = Ap'. (7.6)
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(i) When e = 0, we have my = 0 and the transverse mode is the usual photon
with w, = k (since the velocity of light ¢ is 1). On the other hand, the longitudinal
mode describes the Goldstone-Nambu boson!3 which, for e = 0, corresponds to the
vibration of ¢, propagating with the sound velocity v << 1 (i.e., wy — kv as
k — 0). (iii) For very large k, the excitation of ¢ approaches the free boson
spectrum k2/2M ,
k? 1
we — —— for k >> 2Mv and (2M/AL)T . (7.7)
) 2M
For e # 0, the Goldstone-Nambu boson joins with the transverse photon to form a
_ massive vector field V', which leads to the above formulas for wg and w; , consistent
with (i)-(iii).

For the coherence length £, we may set w¢(k) =0 and k becomes complex,
which gives a boson-amplitude, say exp (zkz), that varies exponentially with dis-
tance (e.g., along the radius of a vortex filament). The decay rate in = determines
€. From (7.4), the root '

k= ivV2us for we(k) = 0 (7.8)
satisfies

B = (Mo) & [(Mo)* — (MR ] (7.9)

The amplitude exp (tkz) becomes, then, exp (—\/5/,&.7:). To conform to the
usual definition, the coherence length £ is given by [Re(zi—)]~", which is always

> [Re(ps)] ™"
(1) For v2 > (MAL)™!, puy and p_ are real and

£ = 1/u_. (7.10)
(2) For v2 < (MAL)™", pyi are complex with

py = pto= (M/AL)ie™ (7.11)

where
cos2a = MApv? (7.12)

and

sin2a = [1- (MM 0?)]7, (7.13)
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€ = \/%J-L-seca. (7.14)

A complex uy implies the condensate amplitude inside a vortex filament also con-

correspondingly,

tains an oscillatory component, which may lead to new observational possiblities.

In the case v?2 < (MAL)™!, according to (7.12) cos 2a varies from 0 to 1;
therefore, cos a is between 715 and 1. Hence

2 N
V2E 2 ez 2 | (715)

(Recall that A7? = (2¢B)?/Mc?. The product A, times the Compton wavelength
h/Mc is independent of c, the velocity of light.) Assume a boson condensate
density B? (at T << T.) between 102 — 102’em=3. On account of (7.5),
M = 2m, and €?/4r = 1/137, the London length is

AL ~ 12004  for  B? ~ 10%cm™? (7.16)

and Ay ~ 38004 for B2 ~ 10%m™2. Since the Compton wavelength M~! is
~2x 10734, we see that in case (2), (7.14)-(7.15) give

£ ~ few 4. (7.17)

Case (1) holds only if v is larger than (MA;)~t ~ 10~ times the velocity of light;
hence, depending on v, £ ~ (Mv)™! < few A4, or £ ~ /2vA << AL . In either
case, the theory predicts a very small £, consistent with experimental observations.
Because Ap >> ¢, the s-channel theory gives, in general, a type Il superconductor.

The s-channel theory is based on the observation that the coherence length ¢
is small for all recently discovered high T, superconductors. It is indeed satisfying
that within the s-channel theory, the smallness of £ can in turn be calculated.
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8. HALL ANOMALY

The Hall number ny(T,,T) has been extensively measured!*~2° for a variety
of cupric superconductors and for various T, and T > T, . In the s-channel theory,
the fermion carries charge e and the boson 2¢. Let ny,pus be the density and
mobility of the fermion, and n, , 11y be those of the boson. In a simple two-carrier
model, ny is given_by

N n + 2nppp)?
nu(l.,T) = gty $2min) (8.1)
nyus + 2nppg

From either the usR experiment (equations (2.1) and (2.6)) or the theoretical
formula (2.9), we know that as 7, — 0, n, — 0 and therefore

nyg — Nny. (8.2)
In addition, since the fermions form a degenerate Fermi sea with top energy = v,
let its density at T =0 be n,:

~ MgV

ny (8.3)

T

where m; is the fermion mass and ¢ is, as before, the average spacing between
neighboring CuO, planes. In the temperature range of interest, we may neglect
the small temperature variation of the fermion density ns and set

ny = n, = constant, (8.4)

which is the same parameter for all cupric superconductors.

For a given sample (La—214,0r Y — 123, or - <), the total charge density
(in units of ¢)

n = ny+2n; = n, +2n,
is independent of T but, because of doping, varies with T, . Therefore,

ny = %(n——n,,) = ny(Te) (8.5)



