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Preface

Despite all the progress being made in the fields of molecular and cellular biology, the role and
effects of metal ions on cellular homeostasis in the various organs of mammals are only beginning
to be truly defined. Working with divalent and trivalent metals and metals with higher valency in
biological systems can be particularly challenging because of the complex and, under certain condi-
tions, transient bonding interactions that metal ions can undergo. It is particularly challenging to
follow metal ions in their complex biological journey from the environment in tissues and cells.
That journey commonly involves association of metals with extracellular ligands that are either
specific to particular metal species or promiscuous in their associations with metals, then entry into
the cytosolic compartment of target cells. Cell entry requires metals to traverse the cellular plasma
membrane, often through the interaction of metals, their ligands, or both, with transporter mole-
cules or by mechanisms independent of transporters. Intracellular metal ions then associate with
intracellular molecules in specific compartments to signal their presence and trigger cellular
responses to that presence, and to carry out physiological functions as essential components of cel-
lular enzymes and structural molecules.

Moreover, without the availability of radioactive forms of certain metal ions, accurate measure-
ment of metal content within target cells and their subcellular compartments and organelles
exceeds the sensitivity, accuracy, and reproducibility of current quantitative and qualitative ana-
lytical methods to measure these metallic species. With the continued decrease in commercially
available isotopes of various metals, new challenges are being imposed on the next generation of
molecular and cellular biologists. We rely on them for new methods and experimental strategies
to discover how mammalian cells detect, take up, use, and excrete metals to maximize their
extraordinarily valuable reductive and oxidative capacity for cellular function while minimizing
their capacity for harm—and to exploit that knowledge for therapeutic benefit and to avoid metal-
induced damage.

Our rationale for this volume stems from the ever-shifting sands of opportunity to compile a
written summary of the state of knowledge in metal metabolism and homeostasis in target cells. We
have compiled the current perspectives of experts in the areas of transport and handling, metabo-
lism, and transcriptional regulatory activity of a number of metal ions of high current interest in the
scientific literature.

Unlike our previous volume (Molecular Biology and Toxicology of Metals, published in 2000 by
Taylor & Francis), which focused on the toxicology effects of a number of metals, the present volume
concentrates primarily on physiological mechanisms underlying metal ion handling with respect to
homeostasis, enzyme activity, transcriptional regulation, and other events designed to avoid toxicity
and enhance cellular function. In view of the long life (indeed, the immortality) of metal ions, their
capacity to both nurture and damage living systems, and their exceptional value as molecular redox
tools in the hands of cellular molecules, the subject continues to both fascinate and generate new
knowledge with the potential to reframe our understanding of cellular function.

James Koropatnick
Rudolfs K. Zalups
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2 Cellular and Molecular Biology of Metals

1.1 INTRODUCTION

Cells and organisms require many different metal ions. As many as 3000 proteins in the human
proteome utilize Zn?* for structural or catalytic purposes [1,2]. Hundreds of proteins employ iron
and copper [3,4]. When these and other metal ions are unavailable nutritionally or their metabolism
is deranged, the consequences can be severe.”

Several nonessential, toxic metals consistently appear in the list of environmental pollutants of
most concern for human health [S—7]. Still, some of the best anticancer therapeutic agents are metal-
lodrugs or otherwise interact with metals as part of their mechanism of action [8—11]. Nevertheless,
despite the challenges and opportunities, surprisingly few scientists study metal ions in biological
systems. Fewer still focus on questions in metallobiology from a chemical perspective, striving to
link chemistry with biology. Thus, physiological or pathological studies may conclude that a metal
ion or complex causes a particular cellular outcome and delineate changes that ensue upon pertur-
bation of the metallic species but never define the actual site where the inorganic chemistry takes
place. For example, zinc deficiency causes defects in immune response, causes apoptosis, and
inhibits cell proliferation, but the molecular sites that undergo depopulation of Zn?* and start com-
plex cascades of reactions leading to these outcomes are largely unknown [12-14]. Or, Pb** and
CH;Hg" induce neurotoxicity that exhibits well-established phenotypes [15,16]. However, relatively
little is known about the specific binding sites occupied by these ions and how such interactions
initiate and perpetuate toxicity.

This chapter offers an excursion into metallobiochemical research aimed at revealing the impor-
tance of the chemical perspective for studying and understanding metallobiological processes. The
topics reflect the authors’ interests in relation to subjects addressed in this monograph. The discus-
sion begins with a general introduction to inorganic reaction classes. Then several topics are used
to illustrate a combined chemical-cellular approach to investigating metallobiological problems
related to metal ion metabolism.

1.2 INTRODUCTION TO INORGANIC BIOCHEMISTRY RELATED
TO METAL ION TRAFFICKING

Cells present themselves to researchers as remarkably complex, endlessly integrated entities. Until
recently, biochemists gained information and understanding about cellular chemistry by studying
individual metabolic reactions and cellular structures. As new technologies emerged, scientists
began studying collectives such as the genome and the proteome, with the aim of comprehending
how cell structures interact and work together to generate the basic living system, the cell.

The “omics” perspective now extends to virtually any grouping of molecules within the metabo-
lome (all of the metabolites in the cell), including the glycosylome, the lipidome, and the metalome
[1-4]. At first sight, one wonders what rationale might justify grouping diverse metal ions into the
metalome. In a sentence: All are small, positively charged ions that are metabolized by a small set
of general inorganic reaction mechanisms.

Metabolism means the collection of reactions that govern the organized cellular uptake, distri-
bution, and efflux of metal ions (M) that link their presence in cells to their localization in spe-
cific sites, where they participate in a huge array of structures and reactions. Used in this way, the
metabolism of metal ions is called trafficking. As charged entities, metal ions exist in aqueous

* Abbreviations: CA, carbonic anhydrase C; DEA/NO, diethylamine nonoate; DTNB, 5,5N-dithio-bis(2-nitrobenzoate);
EGTA, (2,2"-oxypropylene-dinitrilo)tetracetic acid; FRET, fluorescent resonance energy transfer; green fluorescent protein;
ICPMS, inductively coupled plasma mass spectrometry; MT, metallothionein; PAGE, polyacrylamide gel electrophoresis;
PYR, pyrithione, 2-mercaptopyridine-N-oxide; SNAP, S-nitrosyl-acetylpenicillamine; TPEN [N,N,NNNN-tetrakis(2-
pyridylmethyl)-ethylenediamine]; TSQ, N-(6-methoxy-8-quinolyl)-p-toluensulfonamide.
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solution either in aquated form neutralized by an equivalent number of negatively charged ions or
as complexes with charged or polar ligand molecules that bind metal ions through electron-rich
metal ion binding sites involving N, O, and/or S atoms. Trafficking of biologically essential metal
ions from outside the cell to the final sites of functional activity such as metalloproteins consists
conceptually of a series of directed reactions that involve metal-ligand species at every step along
each pathway.

The grand conceptual problem in metal ion trafficking may be posed as follows:

A substantial number of metal ions or metallic species play key roles in cellular processes. Their
properties range from those of alkali metal ions to the left of the periodic table to transition metal
ions such as Fe?*3*, Zn?*, and Cu'*?*, In cells, they confront a multitude of metal ion binding ligands,
both their natural binding sites and many other potential sites that compete for binding. The latter
exist simply because proteins (amine, imidazole, carboxyl, and thiol groups) and nucleic acids
(phosphate and base nitrogen and oxygen substituents) are replete with groups that display signifi-
cant affinity for metal ions. In this heterogeneous environment, how are specific pathways that
deliver metal ions from outside the cell to their ultimate binding sites favored?

The entrance into the cell and the pathological activity of toxic or therapeutic metal ions or metal
complexes, such as Cd**, Pb**, and cis-diamminedichloro-Pt(II), must also be based on similar
principles of metal ion trafficking, involving intracellular binding sites and the formation of metal-
ligand complexes that are not normally part of the cellular milieu.

1.2.1  MEeTAL-LiIGAND BINDING

The generalized trafficking reactions consist of the following processes, in which M and L are metal
ion and metal binding ligand, respectively [17]. Each reaction is characterized by an equilibrium
(stability) constant (K) and rate constants (k,, k_;) for the forward and reverse reactions:

M+L=M-L, K k,k, (1.1a)
iM + 3L, = IM-L,. (1.1b)

Reaction 1.1a describes the association of the metal ion with a ligand. This reaction and its equi-
librium constant, K, and rate constants for formation and dissociation, k, and k_,, comprise funda-
mental information about biological M-L complexes that can be used to assess the comparative
energetic favorability of binding sites for particular metal ions and the kinetic stability of the prod-
uct complexes. As one moves from left to right in the periodic table, metal ions progressively prefer
to bind to oxygen, then nitrogen, and finally sulfhydryl ligands [18]. The same trend operates on
moving down the table within elemental families.

Alkali (Na*, K*) and substantial concentrations of alkaline earth (Mg?*, Ca?*) metal ions exist
in cells as free metal ions because the equilibrium constants with cellular ligands are relatively
small to modest and the rates of formation (k,) and dissociation (k_;) are rapid [19]. As such, the
succession of formation and dissociation reactions, conceived for a variety of ligands (ZL;, sum
of many intracellular ligands, Reaction 1.1b), constitutes a primary means of distributing M among
binding sites (£XM-L,) according to equilibrium stability. In contrast, for transition metal ions such
as Fe?"3*, Zn?*, or Cu'*?* and toxic, heavy metal ions including Cd**, Hg?*, or Pb?*, the concentra-
tion of free metal ion may be vanishingly small because cells contain many natural metal ion
binding sites with large equilibrium constants for M as well as an abundance of lower affinity
sites that, nevertheless, represent a very large combined affinity for M [20]. In this situation, it
becomes paramount to understand the mechanisms by which native metal ions (metal-ligand
complexes) reach specific sites and toxic metal ions either localize selectively or distribute non-
specifically within the cell.
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1.2.2 LIGAND SUBSTITUTION
M-L+L=M-L+L, K k,k,, (1.2a)

M-L+3L =L+3M-L, Kk, k., (1.2b)

Reaction 1.2a represents the most general means by which transition and toxic metal ions move
from one site to another. For transition metal ions, M-L complexes that have large equilibrium
constants (Reaction 1.1a) may still be kinetically reactive in Reaction 1.2a (large k,). As such, their
Rate of distribution among ligands would not be rate limited by small dissociation rate constants
in Reaction 1.2a, implied by the large thermodynamic stability of M-L or the inherent inorganic
properties of the metal ion. For example, the documented trafficking of Cu from cell membrane to
metalloprotein binding site is characterized by a series of ligand substitution reactions that succes-
sively transfer Cu(I) from one thermodynamically stable binding site to another (Figure 1.1) [21]:

Cu()-L, +L,=Cu(l)-L,+L,, (1.3)
Cu()-L, + L; = Cu(I)-L; + L,, (1.4)
Cu(I)-L; + apo-protein — Cu(I)-protein + L. (1.5)

Each of these reactions must be thermodynamically favorable and kinetically feasible. Moreover,
since each Cu-protein terminates a specific pathway of copper trafficking, there would seem to be
kinetic barriers to interpathway Cu(I) transfer as in Reaction 1.6:

Cu(I)'Ll,palhway 1 F L2,pa(hwuy 2 = Cu(l)'LZ,palhway 2 + Ll,palhway I (16)

A particularly stringent test of the forbidden nature of such reactions occurs when the metal binding
protein metallothionein is present in cells as a metal-unsaturated protein (apo-MT) [22]. The very
large affinity of apo-MT for Cu(I) suggests that Reaction 1.6 is thermodynamically favorable when
L, puthway 2 TEPTEsents apo-MT. Yet, the metal-unsaturated pool of MT contains little, if any, Cu(I).
Nor does its presence seem to perturb Cu metabolism.

Ligand substitution reactions also provide a general route by which nonessential metal ions and
metal ion complexes, either toxic contaminants or pharmacological agents, gain access to target
molecules and, on binding to them, modify their biological activity. On examining the Hg?" and
CH,Hg" stability constants with molecules containing N, O, and S ligating groups, each species
displays enormous preference for sulfhydryl group-containing ligands [23]. Nevertheless, the
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FIGURE 1.1  Generalized copper trafficking by ligand substitution with chaperones (L). Numbers in paren-
theses refer to reactions in text.
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affinities of an array of sulfhydryl ligands for mercury are similar and the ligand substitution rates
are rapid [24]. Thus, CH;Hg" readily distributes among competing sulfhydryl-containing sites:

CH,Hg-SR + R’SH = CH,Hg-SR’ + RSH. (1.7)

In this case, mercurial localization must depend on other factors such as the contribution of the
methyl group to the equilibrium or kinetic stability of CH;Hg-SR’ species.

Similarly, the antitumor drug cis-dichlorodiammine Pt(II) reacts with DNA guanine bases
through ligand substitution reactions, leading to cytotoxic DNA adduct species [25,26]:

(NH,),PtCl, = (NH,),PtCI(H,0) = (NH,),Pt(H,0),, (1.8)
(NH,),Pt(H,0), + N-N (adjacent N-nitrogens of guanine) — (NH,),Pt(N-N). (1.9

In this case, the rate limiting reactions are the dissociation of CI- ions, followed by the rapid substi-
tution of guanine nitrogens for bound water molecules. Studies of the reactivity of the platinum drug
with alternative ligand binding sites in the cell, for example, demonstrate that cis-dichlorodiammine
Pt(II) reacts faster with metallothionein than with DNA because the thiolate compound can directly
attack the dichloro species [27-29]. Thus, mechanisms of drug resistance may involve sulfhydryl-
containing molecules such as metallothionein or glutathione that react with the drug and inactivate
it toward further reaction with DNA or other sites [30,31]:

(NH,),PtCl, + 2RS~ = (NH,),Pt(SR), + 2CI~. (1.10)

1.2.3 MEeTAL loN EXCHANGE
M, +M,-L,=M-L,+M,, K k,k,, (1.11a)

M,-L, + My-L, = M, L, + M,-L,. (1.11b)

Metal ion exchange Reactions 1.11a and 1.11b represent a class of reactions that essential metal
ions must and do avoid during trafficking so that the selective binding of specific metals to par-
ticular sites is achieved. But in the face of exposure to toxic metal ions, this type of reaction
becomes a primary consideration. Competition between essential and toxic metal ions for
physiologically important metal ion binding sites is thought to comprise a major category of
reaction leading to cell injury. Thus, acute Pb?* exposure in humans causes anemia due to the
lack of protoporphyrin IX for heme synthesis and hemoglobin formation [32]. Pb?** or a Pb-ligand
complex inhibits §-amino-levulenic acid dehydratase (ALAD) by displacing active site Zn2*
from the enzyme, resulting in a Pb-enzyme that is inactive and unable to participate in porphy-
rin synthesis [33]:

Pb?* + Zn-ALAD = Pb-ALAD + Zn?*. (1.12)

In the case of Cd?*, its metal ion exchange reaction with Zn-metallothionein (Zn-MT) serves as
the primary means to protect cells from Cd?* toxicity [34-36]:

Cd?* + Zn-MT = Cd-MT + Zn?. (1.13)

Indeed, in some cases, Cd-substituted Zn-proteins can undergo direct metal ion exchange
with Zn-MT, resulting in reactivation of the Cd-impaired protein, as has been seen in the case
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FIGURE 1.2 Metal ion exchange between metalloprotein and metallothionein. Numbers in parentheses refer
to reactions in text.

of a Cd-modified Zn-finger protein, tramtrack, and Cd-carbonic anhydrase (CA) (Figure 1.2)
[37,38]:

Cd-tramtrack + Zn-MT = Zn-tramtrack + Cd-MT. (1.14)

1.2.4 ApbbucTt FORMATION
M-L+L =L-M-L, Kk, k. (1.15)

Reaction 1.15 symbolizes the association of metal ion binding ligands with metal ion centers of
M-L complexes to form ternary complexes. The importance of this type of reaction for cellular
chemistry remains to be seen. Nevertheless, the presence of millimolar concentrations of glutathi-
one with its prominent sulfhydryl group begs the question of whether it interacts with metallopro-
tein metal binding sites that are ligand unsaturated (e.g., Zn-CA).

Considering the reactions of some xenobiotic metal complexes or metal ion binding ligands with
cells, the formation of adduct species is an attractive means of bringing these species into associa-
tion with particular sites and molecules in the cell. For instance, in the reaction of pyridoxal-
thiosemicarbazonato-Cu(Il) (Cu(II)-PTSC) with cells, electron spin resonance (ESR) spectroscopy
provides clear evidence that the metal complex initially forms an adduct species and then undergoes
redox chemistry that may account for its strong cytotoxic behavior [39]:

Cu(II)-PTSC + L" — L-Cu(II)-PTSC. (1.16)

The cellular adduct can be modeled by GS-Cu(II)-PTSC, in which GS is glutathione. Once formed,
it may undergo internal oxidation reduction, resulting in the formation of GSSG and Cu(I)-PTSC
that reacts with O, to initiate the production of reactive oxygen species and regenerate Cu(II)-PTSC
for further reaction with the reduction equivalents of the glutathione pool.

1.2.5 Repox ReacTioN

M'Loxidized + Creduced - M'Lreduced +C K’ kl’ k-l' (117)

oxidized>

The redox reactions generalized in Reaction 1.17 play key roles in the chemistry of metal ions
with multiple, accessible oxidation states such as Fe?*3* and Cu'*?* as well as metal complexes that
involve redox-active thiolate ligands. In this context, unregulated oxidation-reduction reactions



