@ Springer

Ali E. Abdallah CIiff B. Jones
Jeff W. Sanders (Eds.)

Communicating
Sequential Processes

The First 25 Years

Symposium on the Occasion of 25 Years of CSP
London, UK, July 7-8, 2004
Revised Invited Papers

@ Springer

Volume Editors

Ali E. Abdallah

London South Bank University

Faculty of BCIM

Institute for Computing Research

103 Borough Road, London, SE1 0AA, UK
E-mail: A.Abdallah@Isbu.ac.uk

Cliff B. Jones

University of Newcastle upon Tyne
School of Computing Science
Newecastle upon Tyne, NE1 7RU, UK
E-mail: cliff.jones @ncl.ac.uk

Jeff W. Sanders

Oxford University Computing Laboratory
Parks Road, Oxford OX1 3QD, UK
E-mail: Jeff.Sanders @comlab.ox.ac.uk

The cover illustration is the work of Bill Roscoe.

Library of Congress Control Number: 2005925390

CR Subject Classification (1998): D.2.4, E3, D.1.3, D.3.1

ISSN 0302-9743
ISBN-10 3-540-25813-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25813-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11423348 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3525

Preface

This volume, like the symposium CSP25 which gave rise to it, commemorates
the semi-jubilee of Communicating Sequential Processes.

Tony Hoare’s paper “Communicating Sequential Processes”! is today widely
regarded as one of the most influential papers in computer science. To commem-
orate it, an event was organized under the auspices of BCS-FACS (the British
Computer Society’s Formal Aspects of Computing Science specialist group).
CSP25 was one of a series of such events organized to highlight the use of formal
methods, emphasize their relevance to modern computing and promote their
wider application. BCS-FACS is proud that Tony Hoare presented his original
ideas on CSP at one of its first meetings, in 1978.

The two-day event, 7-8 July 2004, was hosted by London South Bank Uni-
versity’s Institute for Computing Research, Faculty of Business, Computing and
Information Management. The intention was to celebrate, reflect upon and look
beyond the first quarter-century of CSP’s contributions to computer science. The
meeting examined the impact of CSP on many areas stretching from semantics
(mathematical models for understanding concurrency and communications) and
logic (for reasoning about behavior), through the design of parallel programming
languages (i/o, parallelism, synchronization and threads) to applications vary-
ing from distributed software and parallel computing to information security,
Web services and concurrent hardware circuits. It included a panel discussion
with panelists Brookes, Hoare, de Roever and Roscoe (chaired by Jeff Sanders),
poster presentations by PhD students and others, featured a fire alarm (requir-
ing evacuation in the rain!) and concluded with the presentation of a fountain
pen to Prof. Sir C. A. R. Hoare.

We owe thanks to the BCS-FACS steering committee and its chairman,
Jonathan P. Bowen, for their overwhelming support. Special thanks are due
to Dedian Hopkin (LSBU Vice Chancellor) for opening the event in the newly
built Keyworth Centre; Chris Clare (Dean), Geoff Elliot (Deputy-Dean), and
Terry Fogarty (Head of the Institute for Computing Research) for providing a
stimulating environment for hosting the event. Our gratitude goes to our spon-
sors for their generous support: Microsoft Research, Cambridge, UK; Formal
Systems Europe, Limited; Handshake Solutions, Philips, Netherlands; Verified
Systems International,GmbH, Germany; Formal Methods Europe (FME); and
London South Bank University, Institute for Computing Research. We would
like to thank the local organization team: Ali N. Haidar, Michelle Hammond,
Kalpesh Kapour and Paul Boca for their hard work to ensure the smooth
running of the local arrangements.

! Communications of the ACM, 21(8):666-667, 1978.

VI Preface

We would also like to thank Bill Roscoe for his “Golden Valley”? painting
used in the cover of this book. This was the favorite among CSP25 authors who
considered several other alternatives. What’s its relevance to CSP257 In the
words of one of the contributing authors:

It’s a lovely scene with a prominent feature, the much-branching tree
representing CSP, and the road winding off representing the 25 years so
far, with the rest hidden behind the tree. (Who knows where it may still
lead?)

After presentation at the symposium, the contributions were reworked by
their authors and fully refereed. We are grateful to all for their timely and
efficient work, particularly in the refereeing process where helpful and incisive
comments were made. The resulting papers are gathered here, as they were in
the workshop, into session-sized chunks, described below.

The conference website can be found at www.lsbu.ac.uk/menass/csp25 and
www.bcs-facs.org

Semantic Foundations

The first paper to confront the denotational semantics of CSP with due re-
gard to the interplay between communication and abstraction was “A Theory
of Communicating Sequential Processes®” by Steve Brookes, Tony Hoare and
Bill Roscoe. Before it, the simplistic but intuitively compelling traces model
had been the basis for a semantics capable of capturing safety properties but
not of capturing liveness (being too weak to capture deadlock or divergence).
That paper concentrated on the communicating fragment of CSP, TCSP, based
on recursively defined communicating processes evolving in parallel. The study
concentrated, inevitably, on the distinction between the choice of events due to
the environment choosing from a menu (external choice) and as the result of ab-
straction (internal, or nondeterministic, choice); in a subsequent paper* Brookes
and Roscoe extended the denotational model to account also for divergence.
This collection begins with two papers on the semantic foundations of CSP.
Brookes replaces the naive traces semantics with one based on actions and Roscoe
extends the semantics of divergence and provides an appropriate definition of
fixed point. Each paper responds to developments in theoretical computer sci-
ence during the couple of decades since the 1984 and 1985 papers: the former
by acknowledging work on action-based transition systems and the latter by ac-
knowledging progress in our understanding of divergence and fixed points. Each
paper provides stronger techniques whilst retaining the flavor of the original

CSP.

2 Autumn scene in the Golden Valley, Herefordshire, 2000.

3 JACM, 31(3):560-599, 1984.

4 “Apn Improved Failures Model for CSP,” Proc. Seminar on Concurrency, Springer,
LNCS 197, 1985.

Preface VII

In the cleverly titled Retracing the Semantics of CSP Brookes argues for a
traces semantics that is at once more general than that of CSP and yet retains
much of the simplicity and design elegance of the original. The only cost is re-
evaluation of the notion of trace, to make it action based, and imposition of
a fairness condition on processes. The result is a general formalism allowing a
bisimulation-type equivalence between processes that differ only in atomicity of
their actions.

In Seeing Beyond Divergence Roscoe shows how to refine the standard deno-
tational model of a mild extension of TCSP to reveal traces of a process, more
extended than just the minimal traces, after which it may diverge. Concentrat-
ing on possible divergence, and so ignoring ‘refusals or failures’ information, he
constructs a model (named SBD as in the title of the paper) to distinguish a
process’s various opportunities to diverge — something TCSP has never done.
To provide meaning to recursion in SBD Roscoe shows that neither greatest nor
least fixed points would be correct and so he is forced to use a two-stage process
whose result he calls a reflected fixed point.

A further contribution to fixed-point theory in CSP is provided by Mike
Reed in his paper Order, Topology and Recursion Induction in CSP later in this
volume.

Refinement and Simulation

The major difference between CSP and, for example, the process algebra CCS®
lies in the distinction each makes between processes. Whilst processes in CSP
are related by refinement (one can be replaced by the other for the purpose of
implementation), those in CCS are related by the finer notion of (bi)simulation.

In July 2002 a workshop was held at Microsoft Research Ltd. Cambridge to
contemplate the differences and similarities between the various process algebras,
with the aim of reconciling the fundamental ideas of refinement and simulation,
particularly for CSP and CCS. One outcome has been the two papers in this
section. Not surprisingly, established co-authors Hoare and He have produced
related treatments. Each paper uses the notion of barbed traces in a treatment
of process algebra in which refinement and simulation coincide. In fact a combi-
nation of the papers, which the reader will find of quite contrasting styles, might
be regarded as an extra chapter for their book®. Use of barbed traces might be
regarded as an alternative solution to the high-level plan of Brookes.

Hardware Synthesis

From its early days CSP has been closely associated with hardware design. David
May provides an entertaining account of those days in CSP, occam and trans-
puters, the paper of his after-dinner speech. He makes a convincing case for

® Robin Milner, Communication and Concurrency, Prentice-Hall, 1989.
§ Unifying Theories of Programming, Prentice-Hall, 1998.

VIII Preface

remembering our own (collective) principles as we progress and for valuing more
highly the things at which we are good; and he draws potent conclusions for
industry, research and education.

At the same time as inmos, occam and CSP exploited highly-synchronized
communication, asynchronous hardware design was enjoying a resurgence of pop-
ularity”. The appropriate modification to CSP and the revised laws (thought of
as being obtained by inserting unbounded buffers along channels) was under-
taken by Mark Josephs whose paper Models for Data-Flow Sequential Processes
extends that work to a wider family of processes and more sophisticated semantic
models. It provides some laws and concentrates on denotational semantics.

Philips Electronics, Eindhoven, has shown a long-standing commitment to the
use of formal methods and in particular to the work on asynchronous CSP. In his
monumental paper Implementation of Handshake Components, Ad Peeters shows
how CSP underlies the techniques of the established Handshake Technology
developed at Philips for the design and implementation of unclocked circuits.
The interest focuses on handshaking protocols that are efficient and correct in
the various paradigms for unclocked design — summarized in this self-contained
article. Peeters demonstrates the remarkable extent to which process algebra
successfully pervades the various levels of abstraction.

Transactions

The laws satisfied by asynchronous processes communicating lazily via streams,
as treated in the previous section, for example in the article by Mark Josephs,
resemble those satisfied in transaction processing: a topic at the heart of applied
formal methods. In fact, in his book Communicating Sequential Processes Hoare
introduced operators to model the interrupt, checkpoint, rollback and recovery of
transaction-processing systems. In this section that topic is further explored; the
main concern is to maintain atomicity in a distributed system. Some treatments
have attempted to do so using event refinement, the process algebra version of
the data refinement of sequential programming.

But in A Trace Semantics for Long-Running Transactions Michael Butler,
Tony Hoare and Carla Ferreira give an elegant calculus of compensations for a
restriction of CSP to achieve a similar result. They adopt a traces semantics
in which an action is compensable if it can subsequently be undone atomically,
and presents a compositional ‘cancellation’ semantics for processes with nested
interruption and compensation.

In Practical Application of CSP and FDR to Software Design Jonathan
Lawrence acknowledges the difficulty confronting transfer of research — in this
case concerning CSP — to industry and presents a case study encapsulating
valuable lessons. The study centers on a recent IBM project using CSP and
FDR to produce a multi-threaded connection pooling mechanism connecting a
transaction-processing system to a Web server. The project spanned three days

7 Ivan Sutherland, “Micropipelines”, CACM, 32:720-738, 1989.

Preface IX

and included formal specification in CSP of the required system, validation with
some degree of confidence that it captured the informal requirements, expression
of the design in CSP and verification of its correctness in FDR. The result was
so successful that subsequent enhancements to the delivered Java code could
confidently be done by hand. Lawrence highlights the value of applied MSc’s
which include projects providing students with an opportunity to transfer what
they have learnt on the MSc to the workplace.

Concurrent Programming

The extremely active occam user group continues the application of CSP begun
in the work described by May in this volume to programming-language design.
In Communicating Mobile Processes Peter Welch and Frederick Barnes intro-
duce occam-7 as a hybrid of occam and the 7-calculus introduced by Milner and
studied extensively in CCS. The approach is largely pragmatic, including bench-
marks and the outline of applications. It is envisaged that a semantics would be
denotational, following those of CSP and influenced by the m-calculus.

In Model-Based Design of Concurrent Programs Jeff Magee and Jeff Kramer
use Label Transition Systems (LTS), a notation based on CSP, to model concur-
rent systems and to study their behaviours. Their approach combines clear mod-
elling with tools that support graphical animations and systematic generation
of parallel implementations in concurrent Java. Both safety checks (essentially
traces properties) and liveness checks (under assumptions concerning scheduling
and choice) are achieved. They conclude that such animations are useful both
to students and practitioners in overcoming resistance to formal methods.

Security

One of formal methods’ huge successes in the past decade has been to reasoning
about security. In terms of CSP, the success has been largely due to work by Bill
Roscoe et al. and Gavin Lowe (with the Caspar tool).

In Verifying Security Protocols: an Application of CSP Steve Schneider and
Rob Delicata provide an elegant case study showing how CSP, with the notion
of a rank function, can be used to reason about an authentication protocol.
After proposing a putative protocol their analysis locates a flaw and verifies the
correctness of a modification. In verification, the rank function is used to show
that illegitimate messages do not occur. The paper is self-contained and might
be used by those familiar with CSP as an introduction to this topical area.

Over the years various models of computation have been used to formalize
non-interference. Typically these floundered on non-determinism, “input/output”
distinctions, input totality and so forth. In Shedding Light on Haunted Corners
of Information Security Peter Ryan outlines how process algebras, in particular
CSP, can be applied to give a formal characterization of the absence of informa-
tion flows through a system. Unfortunately, Peter Ryan was unable to attend
due to compelling personal reasons at the last minute. Hence, only the abstract
of his talk is included in this volume.

X Preface

Linking Theories

Whilst security has provided one important playing field for CSP, probability
has provided another. The challenge is to express and reason about distributed
probabilistic algorithms using a variant of process algebra that includes a com-
binator for choice, with given probability, between two processes. Unacceptable
attempts abound. In Of Probabilistic wp and CSP — and Compositionality, Car-
roll Morgan starts ‘afresh’ from the successful work on probabilistic sequential
programming and targets process algebra via the intermediary of action sys-
tems. His translation throws up healthiness conditions for probabilistic CSP and
suggests a program of work that might — finally — result in a compositional
probabilistic process algebra. Incidentally his discussion of (general) composi-
tionality using the example of eye color and the Mendelian concept of allele is a
gem.

In this section is included the abstract for the talk by Mike Reed Order,
Topology and Recursion Induction in CSP that might be thought of as a contri-
bution to semantic foundations. He presents a recursion-induction principle that
produces least fixed points for functions whose least fixed points are maximal
(i.e., deterministic in the failures model of CSP). The setting is a Scott domain
and the results are general enough to cover existing instances of recursion in-
duction in CSP; in topology they are strong enough to provide answers to open
questions from domain theory and point-set topology.

Automated Development, Reasoning and Model Checking

As a formal method, CSP was slow to respond to the pressure for automation.
Perhaps as a result, Formal Methods’ tool FDR achieved immediate success; for
instance it has played a crucial role in many of the papers in this volume. But
it, and its scope, still progress as the papers by Michael Goldsmith and Ranko
Lazi¢ indicate.

In Operational Semantics for Fun and Profit Michael Goldsmith observes
that a source of computation inefficiency in FDR is evaluation of the structured
operational semantics of the operationally—presented target system (an evalua-
tion that is necessary whenever a denotational property is to be determined). He
proposes a supercompilation procedure to overcome it, if not in every case then
at least in many. An unexpected benefit of supercompilation is transformation
of a process to a form accessible to previously studied watchdog transformations
that enable a refinement check to be recast in more efficient form.

The method of data independence allows a model-checking argument, con-
cerning a process whose data type takes on a single value, to be extended to
that process with arbitrary data value. In On model Checking Data-Independent
Systems with Arrays with Whole-Array Operations Ranko Lazié, the originator
of the technique of data independence in CSP, Tom Newcomb, and Bill Roscoe
show how to extend it to programs using arrays indexed by one data-independent
variable that have values from another. They obtain simple and natural condi-
tions for decidability or undecidability of realistic questions concerning the use
of such types.

Preface XI

For all its use, and all its appearance in this volume, FDR is far from being
the only formalism for animating CSP. In the article by Magee and Kramer
Model-Based Design of Concurrent Programs an alternative has already been
demonstrated.

Industrial-Strength CSP

We have seen how CSP has been used to study theoretical aspects of concurrency
and that it seems to offer yet further potential for doing so. We have seen how it
has been used in hardware design, at both the implementation and design levels.
And we have seen how its tools offer industrial-strength model checking. But
what about the broader scope of software engineering?

In Industrial-Strength CSP: Opportunities and Challenges in Model-Checking,
Sadie Creese demonstrates the use of FDR in reasoning about various aspects of
high-integrity systems from industry, as seen from her perspective in the Systems
Assurance Group within QinetiQ.

In the paper Applied Formal Methods — from CSP to Ezecutable Hybrid
Specifications Jan Peleska discusses his work at Verified Systems International
and the University of Bremen. His case studies are drawn from an impressively
realistic range, including an implementation of Byzantine agreement to provide
a fault-tolerant component of the International Space Station, and the avionics
controller of the Airbus A340. He discusses the difficulties involved in the pro-
duction of large and complex systems. Hybrid methods become important and
executability, in the form of tools available for prototyping, necessary to convince
coworkers. But in the end formal methods, and in particular CSP, remainS just
one of a spectrum of techniques that contribute to product quality.

Reflections!

It is not often that burgeoning areas are afforded the luxury of reflecting on
both their past and futures. With the contributions contained in this volume
the reader has evidence enough to decide the relevance of Gilbert Ryle’s warn-
ing (Dilemmas, The Tarner Lectures, 1953, Cambridge University Press, digital
printing 2002, page 14.)

Karl Marx was sapient enough to deny the impeachment that he was a
Marxist. So too Plato was, in my view, a very unreliable Platonist. He
was too much of a philosopher to think that anything that he had said
was the last word. It was left to his disciples to identify his foot marks
with his destination.

Ali E. Abdallah, Cliff B. Jones and Jeff W. Sanders
London, Newcastle and Oxford, January 2005

XII Preface

Sponsors

g: A Q’s S)‘:SN LONDON
¥ / OSOHUTR BARK

- UMIVERNTY
BCS- Formal Aspect of
Computing Science London South Bank
specialist group University, UK

BCS

HANDSHAKE
SOLUTIONS

Handshake
Formal Methods Solutions, Philips,
Europe Netherlands

stems

Formal Systems (Europe)
Limited

Wﬁiﬁsafﬁ ||

Microsoft Research,
Cambridge, UK

Verified Systems

International, GmbH,
Germany

Lecture Notes in Computer Science

For information about Vols. 1-3362

please contact your bookseller or Springer

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3492: P. Blache, E. Stabler, J. Busquets, R. Moot
(Eds.), Logical Aspects of Computational Linguistics. X,
363 pages. 2005. (Subseries LNAI).

Vol. 3467: J. Giesl (Ed.), Term Rewriting and Applica-
tions. XIII, 517 pages. 2005.

Vol. 3465: M. Bemnardo, A. Bogliolo (Eds.), Formal Meth-
ods for Mobile Computing. VII, 271 pages. 2005.

Vol. 3463: M. Dal Cin, M. Kaéniche, A. Pataricza (Eds.),
Dependable Computing - EDCC 2005. XVI, 472 pages.
2005.

Vol. 3461: P. Urzyczyn (Ed.), Typed Lambda Calculi and
Applications. XI, 433 pages. 2005.

Vol. 3459: R. Kimmel, N. Sochen, J. Weickert (Eds.), Scale
Space and PDE Methods in Computer Vision. XI, 634
pages. 2005.

Vol. 3456: H. Rust, Operational Semantics for Timed Sys-
tems. XII, 223 pages. 2005.

Vol. 3455: H. Treharne, S. King, M. Henson, S. Schneider
(Eds.), ZB 2005: Formal Specification and Development
in Z and B. XV, 493 pages. 2005.

Vol. 3454: J.-M. Jacquet, G.P. Picco (Eds.), Coordination
Models and Languages. X, 299 pages. 2005.

Vol. 3453: L. Zhou, B.C. Ooi, X. Meng (Eds.), Database
Systems for Advanced Applications. XX VII, 929 pages.
2005.

Vol. 3452: F. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. X1, 562
pages. 2005. (Subseries LNAI).

Vol. 3450: D. Hutter, M. Ullmann (Eds.), Security in Per-
vasive Computing. XI, 239 pages. 2005.

Vol. 3449: F. Rothlauf, J. Branke, S. Cagnoni, D.W. Corne,
R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero,
G.D. Smith, G. Squillero (Eds.), Applications on Evolu-
tionary Computing. XX, 631 pages. 2005.

Vol. 3448: G.R. Raidl, J. Gottlieb (Eds.), Evolutionary
Computation in Combinatorial Optimization. XI, 271
pages. 2005.

Vol. 3447: M. Keijzer, A. Tettamanzi, P. Collet, J.v.
Hemert, M. Tomassini (Eds.), Genetic Programming.
XIII, 382 pages. 2005.

Vol. 3444: M. Sagiv (Ed.), Programming Languages and
Systems: XIII, 439 pages. 2005.

Vol. 3443: R. Bodik (Ed.), Compiler Construction. X1, 305
pages. 2005.

Vol. 3442: M. Cerioli (Ed.), Fundamental Approaches to
Software Engineering. XIII, 373 pages. 2005.

Vol. 3441: V. Sassone (Ed.), Foundations of Software Sci-
ence and Computational Structures. XVIII, 521 pages.
200s5.

Vol. 3440: N. Halbwachs, L.D. Zuck (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
XVII, 588 pages. 2005.

Vol. 3439: R.H. Deng, F. Bao, H. Pang, J. Zhou (Eds.),
Information Security Practice and Experience. XII, 424
pages. 2005.

Vol. 3437: T. Gschwind, C. Mascolo (Eds.), Software En-
gineering and Middleware. X, 245 pages. 2005.

Vol. 3436: B. Bouyssounouse, J. Sifakis (Eds.), Embedded
Systems Design. XV, 492 pages. 2005.

Vol. 3434: L. Brun, M. Vento (Eds.), Graph-Based Repre-
sentations in Pattern Recognition. XII, 384 pages. 2005.
Vol. 3433: S. Bhalla (Ed.), Databases in Networked Infor-
mation Systems. VII, 319 pages. 2005.

Vol. 3432: M. Beigl, P. Lukowicz (Eds.), Systems Aspects
in Organic and Pervasive Computing - ARCS 2005. X,
265 pages. 2005.

Vol. 3431: C. Dovrolis (Ed.), Passive and Active Network
Measurement. XII, 374 pages. 2005.

Vol. 3429: E. Andres, G. Damiand, P. Lienhardt (Eds.),
Discrete Geometry for Computer Imagery. X, 428 pages.
2005.

Vol. 3427: G. Kotsis, O. Spaniol (Eds.), Wireless Systems
and Mobility in Next Generation Internet. VIII, 249 pages.
2005.

Vol. 3423: J.L. Fiadeiro, P.D. Mosses, F. Orejas (Eds.), Re-
cent Trends in Algebraic Development Techniques. VIII,
271 pages. 2005.

Vol. 3422: R.T. Mittermeir (Ed.), From Computer Literacy
to Informatics Fundamentals. X, 203 pages. 2005.

Vol. 3421: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part II. XXXV, 1153 pages. 2005.

Vol. 3420: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part I. XXXV, 933 pages. 2005.

Vol. 3419: B. Faltings, A. Petcu, F. Fages, F. Rossi (Eds.),
Constraint Satisfaction and Constraint Logic Program-
ming. X, 217 pages. 2005. (Subseries LNAI).

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol. 3416: M. Bohlen, J. Gamper, W. Polasek, M.A. Wim-
mer (Eds.), E-Government: Towards Electronic Democ-
racy. XIII, 311 pages. 2005. (Subseries LNAI).

Vol. 3415: P. Davidsson, B. Logan, K. Takadama (Eds.),
Multi-Agent and Multi-Agent-Based Simulation. X, 265
pages. 2005. (Subseries LNAI).

Vol. 3414: M. Morari, L. Thiele (Eds.), Hybrid Systems:
Computation and Control. XII, 684 pages. 2005.

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. XVI, 312 pages. 2005.

Vol. 3411: S.H. Myaeng, M. Zhou, K.-F. Wong, H.-J.
Zhang (Eds.), Information Retrieval Technology. XIII,
337 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Hernindez Aguirre,
E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
X, 127 pages. 2005.

Vol. 3408: D.E. Losada, J.M. Ferndndez-Luna (Eds.), Ad-
vances in Information Retrieval. XVII, 572 pages. 2005.

Vol. 3407: Z. Liu, K. Araki (Eds.), Theoretical Aspects of
Computing - ICTAC 2004. XIV, 562 pages. 2005.

Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 829 pages. 2005.

Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
XVI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. XI, 419 pages. 2005. (Subseries LNAI).

Vol. 3401: Z. Li, L.G. Vulkov, J. Wa$niewski (Eds.), Nu-
merical Analysis and Its Applications. XIII, 630 pages.
2005.

Vol. 3399: Y. Zhang, K. Tanaka, J.X. Yu, S. Wang, M. Li
(Eds.), Web Technologies Research and Development -
APWeb 2005. XXII, 1082 pages. 2005.

Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).

Vol. 3396: R.M. van Eijk, M.-P. Huget, F. Dignum (Eds.),
Agent Communication. X, 261 pages. 2005. (Subseries
LNAI).

Vol. 3395: J. Grabowski, B. Nielsen (Eds.), Formal Ap-
proaches to Software Testing. X, 225 pages. 2005.

Vol. 3394: D. Kudenko, D. Kazakov, E. Alonso (Eds.),
Adaptive Agents and Multi-Agent Systems II. VIII, 313
pages. 2005. (Subseries LNAI).

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.
Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3392: D. Seipel, M. Hanus, U. Geske, O. Barten-
stein (Eds.), Applications of Declarative Programming
and Knowledge Management. X, 309 pages. 2005. (Sub-
series LNAI).

Vol. 3391: C. Kim (Ed.), Information Networking. XVII,
936 pages. 2005.

Vol. 3390: R. Choren, A. Garcia, C. Lucena, A. Ro-
manovsky (Eds.), Software Engineering for Multi-Agent
Systems III. XII, 291 pages. 2005.

Vol. 3389: P. Van Roy (Ed.), Multiparadigm Programming
in Mozart/Oz. XV, 329 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web
Services and Web Process Composition. VIII, 147 pages.
2005.

Vol. 3386: S. Vaudenay (Ed.), Public Key Cryptography -
PKC 2005. IX, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. XII, 536 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Vol. 3381: P. Vojtds, M. Bielikov4, B. Charron-Bost, O.
Sykora (Eds.), SOFSEM 2005: Theory and Practice of
Computer Science. XV, 448 pages. 2005.

Vol. 3380: C. Priami (Ed.), Transactions on Computa-
tional Systems Biology I. IX, 111 pages. 2005. (Subseries
LNBI).

Vol. 3379: M. Hemmje, C. Niederee, T. Risse (Eds.), From
Integrated Publication and Information Systems to Infor-
mation and Knowledge Environments. XXIV, 321 pages.
2005.

Vol. 3378: J. Kilian (Ed.), Theory of Cryptography. XII,
621 pages. 2005.

Vol. 3377: B. Goethals, A. Siebes (Eds.), Knowledge Dis-
covery in Inductive Databases. VII, 190 pages. 2005.
Vol. 3376: A. Menezes (Ed.), Topics in Cryptology — CT-
RSA 2005. X, 385 pages. 2005.

Vol. 3375: M.A. Marsan, G. Bianchi, M. Listanti, M. Meo

(Eds.), Quality of Service in Multiservice IP Networks.
XIII, 656 pages. 2005.

Vol. 3374: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems. X, 279 pages.
2005. (Subseries LNAI).

Vol. 3372: C. Bussler, V. Tannen, 1. Fundulaki (Eds.), Se-
mantic Web and Databases. X, 227 pages. 2005.

Vol. 3371: M.W. Barley, N. Kasabov (Eds.), Intelligent
Agents and Multi-Agent Systems. X, 329 pages. 2005.
(Subseries LNAI).

Vol. 3370: A. Konagaya, K. Satou (Eds.), Grid Computing
in Life Science. X, 188 pages. 2005. (Subseries LNBI).

Vol. 3369: V.R. Benjamins, P. Casanovas, J. Breuker, A.
Gangemi (Eds.), Law and the Semantic Web. XII, 249
pages. 2005. (Subseries LNAI).

Vol. 3368: L. Paletta, J.K. Tsotsos, E. Rome, G.W.
Humphreys (Eds.), Attention and Performance in Com-
putational Vision. VIII, 231 pages. 2005.

Vol. 3367: W.S. Ng, B.C. Ooi, A. Quksel, C. Sartori (Eds.),
Databases, Information Systems, and Peer-to-Peer Com-
puting. X, 231 pages. 2005.

Vol. 3366: I. Rahwan, P. Moraitis, C. Reed (Eds.), Argu-
mentation in Multi-Agent Systems. XII, 263 pages. 2005.
(Subseries LNAI).

Vol. 3365: G. Mauri, G. Paun, M.J). Pérez-Jiménez, G.
Rozenberg, A. Salomaa (Eds.), Membrane Computing.
IX, 415 pages. 2005.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Table of Contents

Semantic Foundations

Retracing the Semantics of CSP
Stephen Brookes 1

Seeing Beyond Divergence
AW, ROSCOE . .. ov ot e e e et e e e e e e e e e 15

Refinement and Simulation

Process Algebra: A Unifying Approach
Tony HOATEottt e e e e e 36

Linking Theories of Concurrency
He Jifengo e e e 61

Hardware Synthesis

CSP, occam and Transputers

David May e 75
Models for Data-Flow Sequential Processes

Mark B. JoSepRSo 85
Implementation of Handshake Components

Ad PeCLters . ..o 98
Transactions

A Trace Semantics for Long-Running Transactions
Michael Butler, Tony Hoare, Carla Ferreira 133

Practical Application of CSP and FDR to Software Design
JONGThan LOWTEREE « v wiws s & oo sos 5am s 5ae 506 580 88 5408 550545 5.8 557505 151

Concurrent Programming

Communicating Mobile Processes
Peter H. Welch, Frederick R.M. Barnesc.ccuuuu... 175

X1V Table of Contents

Model-Based Design of Concurrent Programs
Jeff Magee, Jeff Kramer : .ccscovsisssssssnnsursasnosssessssmens

Linking Theories

Of Probabilistic wp and CSP — and Compositionality
Carroll MOTGON o 510525 505 95 moa m s 1655 @ 5 0 SUvers 5 808 B 906 5 § 18 08 9 598 69615 605 &« 3

Order, Topology, and Recursion Induction in CSP
Mike Reed R R A B B R AR ARG § 6 B E 2

Security

Verifying Security Protocols: An Application of CSP
Steve Schneider, Rob Delicata uiiiiiiiinnnn..

Shedding Light on Haunted Corners of Information Security
Peler: BAOTL: 5455055 00s e w005 556 55 o s o mrmom o i mom o 05 5 5 195925 o0 2 190 1m0 51 10 i

Automated Development and Model Checking

Operational Semantics for Fun and Profit
Michael Goldsmith

On Model Checking Data-Independent Systems with Arrays with

Whole-Array Operations
Ranko Lazié, Tom Newcomb, A.W. Roscoeccco.ou..

Industrial-Strength CSP

Industrial-Strength CSP: Opportunities and Challenges in
Model-Checking
SAHLE (CTEEIC. = = 53 s = svwsvsrs s prvis 2% & SEAN & TEwE 8 508 595 U5 45 3 5ER5 b

Applied Formal Methods —From CSP to Executable Hybrid
Specifications
Jan Peleska

Author Index

Retracing the Semantics of CSP

Stephen Brookes

Carnegie Mellon University

Abstract. CSP was originally introduced as a parallel programming
language in which sequential imperative processes execute concurrently
and communicate by synchronized input and output. The influence of
CSP and the closely related process algebra TCSP is widespread. Over
the years CSP has been equipped with a series of denotational seman-
tic models, involving notions such as communication traces, failure sets,
and divergence traces, suitable for compositional reasoning about safety
properties and deadlock analysis. We revisit these notions (and review
some of the underlying philosophy) with the benefit of hindsight, and
we introduce a semantic framework based on action traces that permits
a unified account of shared memory parallelism, asynchronous commu-
nication, and synchronous communication. The framework also allows a
relatively straightforward account of (a weak form of) fairness, so that we
obtain models suitable for compositional reasoning about liveness prop-
erties as well as about safety properties and deadlock. We show how to
incorporate race detection into this semantic framework, leading to mod-
els more independent of hardware assumptions about the granularity of
atomic actions.

1 Introduction

The parallel programming language CSP was introduced in Tony Hoare’s classic
paper [15]. As originally formulated, CSP is an imperative language of guarded
commands [11], extended with primitives for input and output and a form of
parallel composition which permits synchronized communication between named
processes. The original language derives its full name from the built-in syntac-
tic constraint that processes belong to the sequential subset of the language.
The syntax of programs was also constrained to preclude concurrent attempts
by one process to write to a variable being used by another process: this may
be expressed succinctly as the requirement that processes have “disjoint local
states”. These design decisions, influenced by Dijkstra’s principle of “loose cou-
pling” [10], lead to an elegant programming language in which processes interact
solely by message-passing. Ideas from CSP have passed the test of time, having
influenced the design of more recent parallel programming languages such as
Ada, occam [18], and Concurrent ML [26].

Most of the subsequent foundational research has focussed on a process al-
gebra known as Theoretical CSP (or TCSP) in which the imperative aspects
of the original language are suppressed [2]. In TCSP (and in occam) processes

A.E. Abdallah, C.B. Jones, and J.W. Sanders (Eds.): CSP25, LNCS 3525, pp. 1-14, 2005.
© Springer-Verlag Berlin Heidelberg 2005

