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PREFACE

The strong interest with which these lectures on supersymmetry and
supergravity were received at Princeton University encouraged me to
make their contents accessible to a larger audience. They are not a sys-
tematic review of the subject. Instead, they offer an introduction to the
approach followed by Bruno Zumino and myself in our attempt to
develop and understand the structure of supersymmetry and supergravity.

This book consists of two parts. The first develops a formalism which
allows us to construct supersymmetric gauge theories. The second part
extends this formalism to local supersymmetry transformations.

At the end of each chapter, two papers are cited which I recommend
to the reader. I am aware that this selection does not do justice to many
authors who have contributed to the subject. However, 1 would like to
draw attention to the more complete lists of references found in P. Fayet
and S. Ferrara, Supersymmetry, Physics Reports 32C, No. 5, 1977, and
P. Van Nieuwenhuizen, Supergravity, Physics Reports 68C, No. 4, 1981.

Throughout the text, important equations are numbered in boldface.
They are collected at the end of each chapter. Exercises are also included
along with each chapter; many of them contain information essential to
a deeper understanding of the subject.

This book was prepared in collaboration with Jonathan Bagger, without
whom it would never have been written. Both Jon and I would like to
thank Winnie Waring for her devoted assistance in the preparation of the
manuscript. As a tribute to her high standards, we have tried our best
to avoid errors in factors and signs. Many people have helped eliminate
these errors. In particular, we would like to thank Martin Miiller for
his assistance with the second half of the book.

I wish to express my gratitude to the Federal Republic of Germany
for the grant which made possible my stay at The Institute for Advanced
Study as an Albert Einstein Visiting Professor, and Jon would like to
express his appreciation to the U.S. National Science Foundation for
his Graduate Fellowship at Princeton University.

In conclusion, I would like to thank Stephen Adler and the Members
of the Institute for Advanced Study, as well as David Gross and the
Department of Physics at Princeton University, for their most encour-
aging and critical interest in these lectures.

JuLius WEss
UNIVERSITY OF K ARLSRUHE
MaAy, 1982
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I. WHY SUPERSYMMETRY?

Supersymmetry is a subject of considerable interest among physicists and
mathematicians. Not only is it fascinating in its own right, but there is
also a growing belief that it may play a fundamental role in particle
physics. This belief is based on an important result of Haag, Sohnius, and
Lopuszanski. They proved that the supersymmetry algebra is the only
graded Lie algebra of symmetries of the S-matrix consistent with relativis-
tic quantum field theory. In this chapter, we shall discuss their theorem
and its proof. (Readers specifically interested in supersymmetric theories
might prefer to start directly with Chapter II or III.)

Before we begin, however, we first present the supersymmetry algebra:

{Q.".Qn} + = 20,4"P,, 0%y

{QuAstB}+ = {QdA’QﬂB}+ =10

[Pm’QazA]— = [Pm’QaiA]— =0
[P,.P,]- = O.

)

The Greek indices (o, f,....% f....) run from one to two and
denote two-component Weyl spinors. The Latin indices (m, n,...) run
from one to four and identify Lorentz four-vectors. The capital indices
(A, B, ...) refer to an internal space; they run from 1 to some number
N > 1.Thealgebrawith N = liscalled the supersymmetry algebra, while
those with N > 1 are called extended supersymmetry algebras. All the
notation and conventions used throughout this book are summarized in
Appendix A.

We are now ready to consider the theorem. Of all the graded Lie
algebras, only the supersymmetry algebras (together with their extensions
to include central charges, which we shall discuss at the end of the chapter)
generate symmetries of the S-matrix consistent with relativistic quantum
field theory. The proof of this statement is based on the Coleman-Mandula
theorem, the most precise and powerful in a series of no-go theorems
about the possible symmetries of the S-matrix.
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The Coleman-Mandula theorem starts from the following assumptions:

(1) the S-matrix is based on a local, relativistic quantum field theory in
four-dimensional spacetime;

(2) there are only a finite number of different particles associated with
one-particle states of a given mass; and

(3) there is an energy gap between the vacuum and the one particle
states.

The theorem concludes that the most general Lie algebra of symmetries of
the S-matrix contains the energy-momentum operator P, the Lorentz
rotation generator M,,,, and a finite number of Lorentz scalar operators
B,. The theorem further asserts that the B, must belong to the Lie algebra
of a compact Lie group.

Supersymmetries avoid the restrictions of the Coleman-Manduia
theorem by relaxing one condition. They generalize the notion of a Lie
algebra to include algebraic systems whose defining relations involve
anticommutators as well as commutators. These new algebras are called
superalgebras or graded Lie algebras. Schematically, they take the
following form:

00}, =X [XX] =X" [0X] =0Q" (1.2)

Here Q, Q', and Q" represent the odd (anticommuting) part of the algebra,
and X, X', and X" the even (commuting) part.

The operators X are determined by the Coleman-Mandula theorem.
They are either elements of the Poincaré algebra # = {P,,M,,} or
elements of a Lorentz-invariant compact Lie algebra .. The algebra .o/
is a direct sum of a semisimple algebra .o/, and an Abelian algebra .«7,,
oA = oA D A,.

The generators Q may be decomposed into a sum of representations
irreducible under the homogeneous Lorentz group .Z':

Q =ZQ11"'1a,i1'--1b' (13)

The Q,, ..

a, -0, and «, - - - a. They belong to irreducible spin-3(a + b) repre-
sentations of .. Since the Q’s anticommute, the connection between spin
and statistics tells us that a + b must be odd.

We shall now invoke two additional assumptions to prove that
a + b = 1. These assumptions are:

.4, are symmetric with respect to the underlined indices

B T

(1) the operators Q act in a Hilbert space with positive definite metric;
and
(2) both Q and its hermitian conjugate Q belong to the algebra.
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We start by considering the anticommutator

{Qal"'auy‘il"'dvaﬁ|"'ljn‘ﬂl"'ﬂb}' (14)

where all the indices are assigned the value 1. The product

Qr.-ni-iQiig- (1.5)

belongs to a spin-(a + b) representation of £, so

{Ql"*l.i'“h@i';i.l-;l} (1.6)

a b

must close into an even element of the algebra with spin (¢ + b). From
the Coleman-Mandula theorem, we know that this element is either
zero or a component of P,,. For a + b > 1, it must be zero.

The anticommutator (1.6) is a positive definite operator in a Hilbert
space with a positive definite metric. This tells us that Q, ..., ;...; =0

a b
.4, are irreducible under 2, they

"'aa;dl"

for a + b > 1. Since the Q,,

all must vanish for a + b > 1. From this we conclude that the odd part
of the supersymmetry algebra is composed entirely of the spin-3 operators
0," and Q-

The anticommutator of Q,“ and Q,,, closes into P,;,

{QaL’QdM} = PauiCLM’ (17)

where P, = 0,"P,,. In Exercise 1 we show that the finite-dimensional
matrix CL,, is hermitian. It may therefore be diagonalized by a unitary
transformation. Since {Q,%0;,} is positive definite, the matrix C",, has
positive definite eigenvalues. This lets us choose a basis in the odd part of
the algebra such that

{0.50sm} = 2P0y (1.8)

We now turn our attention to the anticommutator of two odd elements,
both with undotted indices. The right-hand side of this expression may be
decomposed into symmetric and antisymmetric parts. The symmetric
part has spin 1. From the Coleman-Mandula theorem, the only possible
candidate is the Lorentz generator M ;:

{050} = e X2 + MY, (1.9)
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From the fact that P,, commutes with Q " (see Exercise 2), we find that
the Y™ must vanish. This lets us write the commutator (1.9) as follows:

{050} = &, B, . (1.10)

Here B, is a hermitian element of .«/; @ .o/, and a”%¥ is antisymmetric
in L and M. With this result, the supersymmetry algebra takes the fol-
lowing form:

{0."0Qpm} = 20,4"Pp 0"y
[PnQ."] = [PnQiu] = 0
{0,105} = 50" YMB, = g,, XY
{0:0.0pu} = sd,‘,a*(,y/{B’ = adl;XJ’w (1.11)
[QaL,Bt] = SzLMQaM
[B/-Qal_] = S* MQum
[B,.B,,] = el s

We shall now use the Jacobi identities to further restrict the coefficients
a®t™ and S,%,, in (1.11). The ordinary Jacobi identity may be easily

extended to include anticommutators, as is done in Exercise 3:

The bracket structure { , ] signifies either commutator or anticommutator,
according to the even or odd character of 4, B, and C. The signs are
determined by the odd elements. If the odd elements are in a cyclic
permutation of the first term, the sign is positive; if not, it is negative.
By exploring the Jacobi identities in a certain order, we shall arrive at
our results as quickly as possible.

We first consider the identity

(B, {0."Qim}] + {Q.5 [Q4m:B} — {Qpm: [BQ."]} = 0. (1.13)

The first term vanishes because B, and P,, commute. The second and
third terms give

—{0.505x}S* M* + {04u.0.5}S/ x = 0, (1.14)
or

2P, i[8* " — Siu] = 0. (1.15)
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Equation (1.15) is true only if

S*(ML = S(LM’ (1.16)

so S,%,, is hermitian.
Next we use the identity

[Bl’ {QaL’QﬂM}] + {QaL’ [QﬁAaB(]} - {QﬂM[BhQaL]} =0 (117)

to prove that the generators X:¥ = gL B, form an invariant subalgebra
of o/, @ «/,. Evaluating (1.17) with the help of (1.11), we find

Emﬁ{[B(,XEIL'] + S(MKXEE = S(LKXM} — 0. (1.18)

This shows that the commutator of B, with X¥ closes into the set of

generators XY The XX are linear combinations of the B,, so we con-

clude that the XX¥ form an invariant subalgebra of &/ = o/, @ o,.
We now use the identity

[QaL’ {QﬂMﬁg‘}K}] *+ [QﬂM’ {Q’}'K’QaL}] + [Q\}K' {QaL’QﬁM}] =0 (119)

to show that the generators X% commute with all the generators of 7.
Combining (1.19) with (1.11), we find

&g Q5. X ] = 0, (1.20)
SO
1
[XXN xIM] = E«sﬁf‘[{Qa",Q,g"’}, XL¥] = 0. (1.21)

This implies that the X% form an Abelian (invariant) subalgebra of /.
Since .7, is semisimple, the XY are elements of &, and commute with
all the generators of ./:

(X481 = 0. (1.22)
For this reason, they are called central charges. Inserting (1.22) into (1.18),
SM XK — S XK =0, (1.23)

and substituting X¥¥ = ¢“¥XB, we find

S(ank’kf — S[Lxuk.n\lﬁ = 0. (1.24)
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From the fact that S, is hermitian and a, ¥ antisymmetric, we conclude
SMea "l = —ghlEgw b (1.25)

In Exercise 4 we show that the S, form a representation of 4, @ 4,.
Equation (1.25) tells us that the matrices a, intertwine the representation
S, with its complex conjugate —S,*. Central charges exist only if the
algebra A; @ A, permits such intertwiners. A trivial example is given by
SME = 0. Another is provided by orthogonal groups, where S, = —S,*.
A third example is given in Exercise 5.

No further restrictions follow from the other Jacobi identities, as may
be proven by checking them all. We have therefore found the most general
supersymmetry algebra:

[P,..P,] =0
[Pm,QaL] = [Pm:Qa'L] =0
[PiB,] = [Py X2] =0
{QaL’QdM} = 2Gadem (sLM
{010} = e,,XH
{Qdu@ﬁu} = 85:BX+£A1
[Xw’QaK] = [X@’Qak] =0
[XLM XKN] — [XEMB,] = 0
[Bt"«Bm] = ic/kak
[QaL’Bl] = S(LMQaM
[QauBl] = _S*[LMQ&M

XM — otLMp,.

(1.26)

This is the most general graded Lie algebra of symmetries of the S-matrix
consistent with relativistic quantum field theory. If central charges exist,
they must be of the form XX¥ = «"X¥B, where ¢ intertwines the rep-
resentations S, and — S*’.

REFERENCES

S. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
R. Haag, J. Lopuszanski, and M. Sohnius, Nucl. Phys. B88, 257 (1975).
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EQUATIONS
{QaAaQBB}+ = 201[3um (SAB
{QaA,QpB}+ = {QdA,Q[JB}Jr =0

y - @
[PmrQ:"]- = [Pm.Qsal - = 0
[PmaPn]— = 0.
{4, {B,C]] + {B,{C, A]] + {C, {4,B]] = 0. (1.12)
S*u" =8, . (1.16)
S,MKak’EI} — _ak.@s*fKL. (1.25)
[P,,,,P,,] =0
[Pm’QaL] = [PandL] = 0
[Pm:B.] = [P, X¥] =0
{QaL’QdM} = Zaadem 5LM
'{QaL’QﬁM} = Ea,,XQA/'
{Qu,Qm} = SapX+LM (1.26)

[X¥0,4] = [X24,0.5] = 0

[XM XEY] = [XB,] = 0
[B/.B,.] = ic/wBy
[QaL’Bt’] = S[LMQaM
[QiL*Bl] = —S*(LMQa'zM

XM = o~Mp,.

EXERCISES

(1) Prove that CF,, in (1.7) is hermitian by comparing the anticommutator
(1.7) with its hermitian conjugate.

(2) Show that [Q,,P,,] = 0. Start from the fact that there are no spin
-3 generators. Deduce that [P,.0,"] = Z",,0,™, where the Z",
are some set of numbers. Use the Jacobi identity for [ Py, [P,;.0,"]1]
to prove that all the Z*,, vanish. This shows that the Q," are transla-
tionally invariant.
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(3) Prove the Jacobi identity (1.12). In particular, verify

[B.. [B:,B3]] + [B,. [B3.B,]] + [Bs, [B1,B,]] =0
[Q:. [B2.B;5]] + [B,, [B3.Q:]] + [Bs, [Q1,B,]] = 0
[Bl’ {Qz,Qa}] +{0Q,, [Qs,Bx]} — {@s, [Bvaz]} =0
(01, {Q2.05}] + [Q2, {Q3.0.}] + [Q5,{Q1,0,}] = 0.

(4) Use the identity

[Bt” [Bm’QaL]] + [Bm’ [QazL’Bl]] + [QaL’ [B(’Bm]] == 0
to prove
[Sm’sl] = icm/ksk'
(The matrix S, has elements S,%,,.) Show that —S*, satisfies the
same commutation relations.

(5) The Pauli matrices ¢ and their conjugates —a* both form representa-
tions of SU(2). Show that ¢ is an intertwiner between these rep-
resentations. Verify that the commutator

L M LM 2
{Qa 7QB } == gaﬂb (CIZ1 + 16222)

is consistent with the Jacobi identities if Z, and Z, are central
charges.



II. REPRESENTATIONS OF THE
SUPERSYMMETRY ALGEBRA

An exciting feature of the supersymmetry algebra is that there exist
quantum field theories in which the supersymmetry generators Q, may
be represented in terms of conserved currents J,":

0, = [
p (2.1)
Jm=0.

ox™
The currents J,™ are local expressions of the field operators. The algebra
(I) is satisfied because of the canonical equal-time commutation relations,
and the Hilbert space spans a representation space of the supersymmetry
algebra. In this chapter we shall study the supersymmetry representations
of one-particle states.

The energy-momentum four-vector P,, commutes with the super-
symmetry generators Q, and Q;. The mass operator P? is a Casimir
operator, so irreducible representations of the supersymmetry algebra
are of equal mass. We shall construct these irreducible representations
by the method of induced representations, considering fixed time-like
(P? < 0) and light-like (P? = 0) momenta.

Before we do this, however, we shall first prove that every representa-
tion of the supersymmetry algebra contains an equal number of bosonic
and fermionic states. We begin by introducing a fermion number operator
Np, such that (—)"* has eigenvalue +1 on bosonic states that —1 on
fermionic states. It follows immediately that

(=V"Q, = =0 ()", (2.2)

For any finite-dimensional representation of the algebra (such that the
trace is well-defined), we find

Tr[(—)"{Q.", Qps}] = Trl(—)"(Q.*Qjs + 04sQ.")]

= Tr[ == QJA( = )NFQI}B + QazA( - )NFQI}B]
=0 (2.3)



