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Complementary Spherical Electron Density
Model

D. Michael P. Mingos and Jeremy C. Hawes

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR.
United Kingdom

The bonding in inorganic molecules of the main group and transition metals is discussed in terms of a
model which accounts simultaneously for their stercochemistries and their adoption of the inert gas
counting rules. A molecular compound can be viewed initially as a central atom surrounded by a
spherical shell of electron density, which is representative of the ligand co-ordination sphere, Since
the wave functions for this spherical shell are derived from the particle on a sphere problem it is an
easy matter to define the conditions for the inert gas rule in this hypothetical situation, because the
wave functions for the sphere and the central atom are both expressed in terms of spherical har-
monics with identical quantum numbers. The linear combinations of ligand orbitals in a real com-
plex can be expressed as spherical harmonic expansions and their nodal characteristics defined by
the same quantum numbers. Only co-ordination polyhedra where the atoms provide effective cover-
age or packing on the sphere generate linear combinat.ons in the sequential fashion S, P, D, etc..
These orbitals interact in a complementary fashion with the valence orbitals of the central atom to
give a complete set of molecular orbitals, which emulate those of an inert gas in number and nodal
characteristics. This Complementary Spherical Electron Density Model thereby provides an effec-
tive way of accounting for the stereochemistries of main group and transition metal compouads.
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2 D.M.P.Mingos and J.C . Hawes

A. Introduction

Understanding the factors which influence the shapes of inorganic molecules represents
an on-going challenge for quantum mechanics. The difficulty of providing exact quantum
mechanical solutions for chemical systems of interest has meant that this stereochemical
problem has had to be approached using approximate methods, none of which has
proved to be totally satisfactory. The common occurrence of stable electronic configura-
tions related to those of the inert gases was utilised by Lewis initially and subsequently
extended by Sidgwick to formulate the inert gas rule! %, Although this rule generzlly
defined the stoichiometries of many chemical compounds. it did not provide three dimen-
sional stereochemical descriptions of their structures.

It was Pauling” who was able to develo an approximate quantum mechanical model
based on the Valence Bond Theory which successfully rationa..sed the shapes of simple
0rganic, inorganic and co-ordination compounds in terms of hybrid orbitals on the cen-
tral atom. This localised view of bonding represented a quantum mechanical description
¥ the electron pair bond concept developed by Lewis. Furthermore when combined with
the concept of resonance it had a profound and important impact on the development of
organic and inorganic chemistry throughout the nineteen forties and fifties¥. The valence
bond method could not be applied in an economical fashion to electron deficient, odd-
ciectron and organo-transition metal n-complexes®.

The Sidgwick-Powell approach which was extended and popularised by Nyholm and
Gillespie in the nineteen fifties® 7, focused attention on the total number of electron
pairs surrounding the central atom in a molecule. The idea that electron pairs would tend

Table 1a. Summary in a matrix form of the stereochemistrics «f main group molecular compounds
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Complementary Spherical Electron Density Model 3

to occupy regions of space as widely separated as possible had a classical pictorial simplic
ity and led to a number of preferred co-ordination polyhedra. This approach emphasise..
the fact that the shapes of main group inorganic molecules could be understood in term:
of a small number of easily defined rules despite the apparent complexity of the quantur
mechanical problem. For example, since there is a relationship between the number o
electron pairs and deltahedral co-ordination polyhedra the shapes of simple inorgani:
molecules can be represented in a matrix form such as that shown in Table 1a®. Particu-
larly noteworthy is the manner in which lone pairs successively replace vertices of the
parent polyhedra when they exceed the number of ligands. Some theoretical justificatio:
for the approach has been obtained from the Pauli Exclusion principle®, but the pr:-
posed relative magnitudes for the electron repulsion effects have not found support .
modern quantum mechanical calculations'®. Furthermore, the method is not readiiv
applicable to transition metal co-ordination compounds {Table 1b), sandwich com:-
pounds and polyhedral inorganic molecules.

As a result of the availability of high speed computers the molecular orbital metho
has been used with increased frequency to solve stereochemical problems. The most
popular approach for defining the preferred ground and excited state geometries depend-
on taking sections through the multi-dimensional potential energy surface and examinin;:
how the orbital energies and total energies vary as a function of distortion co-ordinates'"",
This Walsh diagram methodology'? has proved to be widely applicable and reliable and
in recent years has been most effectively popularised by Hoffmann and his coworkers'.
The reasons why the method works so well even when used in conjunction with crude
semi-empirical calculations has puzzled theoretical chemists and suggests the presence of
an underlying fundamental principle!®. In spite of its notable successes this approach has

Table 1b. Summary of the stereochemistries of transition metal molecular compounds
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4 D.M.P.Mingos and J.C. Hawes

pedagogical limitations since it requires the consideration of many distortion co-ordinates
before sensible choices concerning the relative stabilities of alternative geometries can be
made.

Above we have noted the historical development of the more important approaches
to the stereochemical problem. References 15 and 16 summarise some alternative
approaches which have been described. Although familiarity with any one of the major
approaches described above can make them into powerful tools for the chemist,
pedagogically the situation is far from satisfactory. To the simple and fundamental chem-
ical question “What determines the shapes of molecules?” there is no intellectually
satisfactory answer. The valence bond method associates preferred geometries to
superior overlap effects, the valence shel electron pair repulsion theory depends on
maximising the distances between electron pairs and the Walsh methodology depends on
very specific arguments associated with energy changes of specific molecular orbitals
along the distortion co-ordinate. ) ‘

In this review we develop a new stereochemhical model, ~ The Complementary Spheri-
cal Electron Density Model. This mo&!w molecules as interpenetrating spheres of
electron density, and attempts to umify th inert gas rule and molecular orbital formal-
isms. It depends critically on the ideal that shie wave functions of ligands can be expressed
in terms of spherical harmonics. This idea can be traced back to a paper by Verkade et
al.™, but the recent analysis by Stone of cluster compounds using this methodology was
particularly formative'®. The importance of this concept has also been noted by
Quinn'®, who has described a useful method of illustrating spherical, vector spherical
and tensor spherical harmonic functions as projections.

B. Spherical Harmonic Representations of Atomic Orbitals

1. General Mathematical Considerations

The use of hydrogen-like wavefunctions to describe the electronic properties of atoms is
widespread and generally accepted. The wavefunctions are represented as the product of
a radial R, \(r) and an angular part Y; n (0, ¢)

? 2 H k3
r=x+ye+2
24 7 = I COS®
s x « 1 sine cose
"\, y =t sine sine

P w,y.0

Fig. 1. Definition of spherical polar co-ordinates
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W(r,6,¢) =Ry (1) Y\,u (8, ¢) ' iy
Where 1, 8 and ¢ refer to the spherical polar co-ordinate system illustrated in Fig. 1. The
angular part is defined by the spherical harmonic functions given in Table 2. For those

functions with imaginary solutions the real solutions are obtained by taking linear combi-
nations of complementary components, i.c.

Yin = IWZ[1)" Yy + Y]

Yin=16VZ[-1)"Y,n-Y)w] Form>0 (In

Tabde 2. Polar forms of the spherical harmonic functions normal-

isedtodn
Yin Polar Form
Yw 1
Ym v-s- cos B
Y5 V3 sin cosd
Y3 V3 sin 8 sin8
Yy /4y (3 cos’8-1)
Y5 cos 0 sinB cos ¢
Y VI3 cos@ sin6 sing
Yz (15/4) sin’6 cos2¢
Y, T574) sin®@ sin 2¢
Yy V(74) (5 cos’6-3 cos 0)
Y, V(ZI78) sin6 (S cos’8—1) cos
Yy VZ178) sind (5 cos*6-1) sing
Y5 V{(105/4) cos 8 sin’8 cos2¢
Y% 105/4) cos 0 sin’ 0 sin2¢
Y5 3578) sin’6 cos3¢
Y% 578) sin’ @ sin 3¢
Yoo Y10 LT Y3
Ya0 Y54 Y3 % 32

Fig. 2. [llm:ﬁonofpoluplotsoftheang\da:partsoftheawmicwavefmcﬁominthcirrealforms
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Figure 2 illustrates the angular parts of the wavefunctions in their real forms for s (1 = 0),
pd=1lm=0),p, (=1, m=]l, candp, (I =1, m= l,s),dzz(l =2.m = 0),d,
andd,, (1 = 2. m = 1) and dy and dy:_ 2 (I = 2, m = 2) atomic orb.xtals. . .

The particle on a sphere problem also leads to wave functions which are described in
terms of spherical harmonics, but the radial part of the wave function is redundant
because the particle is constrained to lie on the surface of the sphere, that is, at a constant
radius r. The spherical harmonic solutions are governed by the same quantum numbers |
and m and the resultant wave functions can be designated Sy, (1 = 0), P, (1 = 1) and D,
() = 2) in an analogous fashion to that adopted for the hydrogen atom.

A molecule can be viewed to a first approximation as a central atom surrounded by a
sphere of electron density which has been localised into distinct regions on the sphere.
Indeed such a model is the starting point of crystal fi 1d theory, where the potential field
of an octahedral arrangement of point charges is derived by localising the electron
density in just such a manner®™ In the present analysis, the-molecules are covalent and
therefore a molecular orbital analysis is more appropriate. In a molecule MLy the ligand
atomic orbitals are expressed as symmetry adapted linear combinations which combine
with the atomic orbitals of the central atom. It is not generally realised, but is very
important from the point of view of the present analysis, that it is not necessary to use
symmetry arguments to derive ligand linear combinations. As long as the N atoms are
distributed in a spherical fashion about the central atom then the linear combinations can
be derived to a first approximation from a spherical harmonic expansion. For example, in
MHy if the hydrogen atoms are distributed spherically about M then the symmetry
adapted linear combinations Y1, m 0f hydrogen 1Is functions, 0;, can be expressed in terms
of the following spherical harmonic expansion:

Yim = ZCiOi v (nn
* =N’ ZYl,m (eiv ¢’\) Y (IV)

=L% m =0 lc Is.. L=S P D ..

where 6, and ¢ represent the locations of the hydrogen nuclei in spherical polar co-
ordinates (see Fig. 1) and N’ is a normalising constant. In this fashion the linear combina-
tions are assigned quantum numbers | and m which are related to those which have been
defined previously for S, P and D functions derived for the particle on the sphere
problem. Furthermore, their nodal characteristics mimic those of the atomic wave func-
tions of the central atom, M. The designation of | and m quantum numbers to symmetry
adapted linear combinations of ligand orbitals can be traced back to Verkade et al.!”. It
has been formulated in a general mathematical fashion and extended to cluster com-
pounds by Stone'™. The spherical harmonic expansion described above will provide its
most accurate description of the symmetry adapted linear combinations when the ligand
polyhedron is a Platonic solid, i.e. tetrahedral, cubic, octahedral, etc. because in those
circumstances the polyhedral vertices are symmetry equivalent. It will improve as an
approximation as N increases. For smaller polyhedra it is more of an approximation.
* When there is more than one linear combination with the same symmetry then there can
in addition be normalisation problems. The following section describes the utilisation of
these spherical harmonic expansions for a range of ligand co-ordiuation geometries in
order to evaluate the types of S P°, D° and F° functions generated.
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II. Planar MHy Stereachemistries

Figure 3 illustrates schematically the linear combinations of atomic orbitals for some
planar Hy aggregates, together with their Stone designations. Clearly these are non-
spherical, but they demonstrate the way in which the §°, P° and D? functions develop as
N increases. The linear H, moiety has a symmetric, S°, and antisymmetric, P9, pair of
linear combinations. The H; moiety has S° and a pair of singly noded P9, and P,
functions. For H; the additional function generated is a D function, i.e. it is characterisec
by S, PS;, PY. and DS,. Therefore, for planar aggregates of atoms not all of the sphgrical
harmonic functions are utilised. The following functions are systematically excluded:
(1) Those which possess a nodal plane coincident with the xy plane of the polygon, viz,
PY, DY, F3. .. .etc..
(2) Those having a form in the xy plane, which when renormalised is identical to those of
spherical harmonic functions with lower 1, m quantum numbers, e.g. DY and §°, F§, and
9 are identical in projection.

The remaining allowed set of two dimensional combinations are $°, P, P3,, DS, DY,
FS, F% ..... L9.s are illustrated in Fig. 4. They correspond to the solution of the
Schrodinger equation for the particle on the ring problem, i.e. they are the *wo dimen-

"y
] (]
5 Pie
3
a 2] a
S P15 p%c
Hy
a a a g
5 2R P, 03,

Fig. 3. Schematic representations of the linear combinations, L, for planar aggregates of hydrogen
atom 1s functions
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L D

(o} qg [+]
D%c 25 F3c F35

Fig. 4. Schematic representations through the xy plane of the L° functions representing a two
dimensional system

o Namnar Structure $71 P8 Pic Pis| 08 D3¢ D%s D3¢ D3¢ Fa Flc Fis F2c Fos Fic Fis
7 Neptagon L
6 Hexagon m
5 Pantagon
4 Square [ ]
3 Triangle

Fig. 5. Summary of linear combinations for planar o-donor aggregates and their LY, designators.
Particularly noteworthy is the use of F° functions when N > 5

sional analogues of the spherical harmonics. Figure $ illustrates the stepwise manner in
which these functions are utilised for planar Hy aggregates. Particularly noteworthy is
the utilisation of F functions when N is = 6.

Ill. Three Dimensional MHy Stereochemistries

a. Three Connected Polyhedra and Bipyramids

The simplest three dimensional polyhedron is the tetrahedron and the four linear combi-
nations ‘of atomic orbitals (S°, PY, P4, P%) generated from Eq. IV are illustrated in
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so

Fig. 6. Linear combinations
of 13 orbitals for tetrahedral

(4

) g
H, Po Pic Pis

Fig. 6. When N exceeds four then D° and even F° linear combinations are generated.
The particular functions generated depends on the ‘positions of the hydrogen atoms
relative to the nodal cones and planes of the D and F functions. In this section the
spherical harmonic generated linear combinations for bipyramids and three-connected
co-ordination polyhedra are explored. The discussion of planar stereochemistries given

- above has demonstrated that a P§ combination fequires:the presence of more than one
plane of atoms perpendicular to the principle axis. Similarly a D function requires at
least three planes, an F function four planes or more (see Fig. 7). With this property in
mind it is possible to understand the occurrence and absence of the L§ linear combina-
tions of ligand orbitals illustrated in Fig. 8 for three connected polyhedra and in Fig. 9 for
bipyramids.

Yoo Y10
¥Fig. 7. Nodal characteristics of the @

cylmdmnlly symmetric Y, o spherical
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g Q o g a ¢ = v a o a o}
h [ Srruerere 571 PG Pic Pls| 00 O%c O%s O2c 3s[F0 Fic Fis Fac F2s F3c Fis
0 fentagonal Prisa d .
A — =
6 Trigonal Prism —
&4 Tetrahedron

Fig. 8. Summary of linear combinations for three connected co-ordination polyhedra. The absence
of D for all examples is particularly noteworthy

9 3 aQ 0 po0 [} o] (4] a g 0 [l ] ] a g F’J
N Strveture 5710 Pic Pas| o Dy D35 D¢ Dasf Fo Fic Fis Fac F2s F3c F3s
G Heptagonal
‘ Bipyramid —

Hexasgonal
8 Bipyramid -
7 Pentagonal
Bipyramid
é Octahedron -
5 Trigonal
Bipyramid

Fig. 9. Summary of linear combinations for bipyramids. D°,. and D¢, are consistently absent

R

[+] o g
D3¢ ot 0 02¢ ot Dy i

Fig. 10. Nodal characteristics of D® functions

F linear combinations are generated for MHy (N = 5-9) when all the hydrogen
atoms lie on the nodal cones of (10 - N) D or P spherical harmonic functions. For
example when N = 9, (10 - N) = 1, so at least one D° function must be excluded if F°
are generated. See Fig. 10 for an illustration of the nodal characteristic of the D® func-
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tions. Location of the atoms along the nodal cones of DY nullifies this function (all the
coefficients, ¢;, are equal to 0) and requires the utilisation of an F® function. Similarly
location of atoms on the nodal planes of either the DS,  or DS, . functions nullifies them
and forces the adoption of F* functions with an additional nodal plane. See Fig. 11 fora
similar analysis of N = 8 and N = 7 polyhedra, where two and three L° functions are
nullified because of the location of atoms on nodal lines and planes. For example for
bipyramids the D{. and DY, functions are always absent, because bipyramids place the
equatorial atoms in the horizontal nodal plane of DY, and D9, while the axial atoms
always reside in the vertical nodal planes of these functions.

In summary the three-connected polyhedra and bipyramids with N > 7 require the
utilisation of F” functions in order to account fully for the N linear combinations of
atomic orbitals of the peripheral atoms.

J S

o
Dic + Dqs DB’ + Dgc
or Dg « DY

Fig. 11. The nodal charac- D

teristics which are common to
sets of D° and P° functions Dc‘l’c + D‘1’S + Pg

b. Deltahedra

Polyhedra with trianguiar faces exclusively are described as deltahedra and have several
interesting geometric properties’!). For example, their vertices are connected by the
maximum number of edges. This is a property of importance for the borane polyhedra
B,HZ", which are electron deficient and require the maximum degree of delocalisation in
order to stabilise the boron skeleton’®. Figure 12 gives a detailed analysis of the develop-
ment of the linear combinations of atomic orbitals for deltahedra and classifies them
according to their |, m quantum numbers. Particularly striking is.the sequental fashion in
which the linear combinations are built up; unlike the previous classes of polyhedra F°
functions are not used prior to the completion of the D shell. This property can be related
to the ability of deltahedra to give the best coverage on a sphere, i.e. the most even
distribution of points. Consequently, the polyhedra reproduce most closely the surface of
the parent spherical shell which surrounds the central atom in MLy.

Mathematically this property has been explored previously in the context of the
following covering problem by Fejes-Toth and others®,
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] a no o (4 o 6 (o o <] o o [}
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10 Bicapped Square
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Fig. 12. Summary of linear combinations for deltahedral aggregates oi ligand o-orbitals. The
sequential use of §°, P?, D°, and F° functions is noteworthy

If N oil supply depots are available on the surface of the sphere what is their best
arrangement to give the most efficient utilisation of oil resources?

The solution to this problem is based on deitahedral arrangements of points, since
circles from these points which overlap and thereby give complete coverage are of small-
er radius than those for alternative polyhedral arrangements. In a chemical context a

Table 3. Symmetry designations for the ligand linear combinations and central atom orbitals in
deltahedral co-ordination compounds

N 2 3 4 5 6 7 8 9 10

Point Group D., D, Ty Da 0, Ds, Dy Dy, Dy

ww M
§e s ay, a; a, aj a, a) a; a; ay
P an a a3 a3 b, aj b,

R R RN R R R R E R
%: g: }elx}e" }tz }e" 4 }eﬁ }e }e" }33
}

a a; a; 4
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deltahedral arrangement of ligands on a sphere provides a collection of overlapping
regions of electron density which most effectively approximate to a spherical sheil.
The symmetry properties of the linear combinations of atomic orbitals for deltahedra
are summarised in Table 3 and the following characteristics are particularly noteworthy.
The linear combinations have identical symmetry characteristics to those of atomic
orbitals located on the central atom and with matching | and m quantum numbers. This is
a direct consequence of definining both sets in terms of spherical harmonics.
Only for the Platonic solids do 8°, and D$ functions have different symmetry proper-
ties. This is related to the occurence of cubsic fields for these high symmetry polyhedra.
For the polyhedra with Ty, Dy, and D,y symmetries some of the P° and D° functions
have identical symmetry characteristics, e.g. P°(t,) and D°(t,) in T,. Therefore, although
the p and d atomic orbitals for an isolated atom are orthogonal, the corresponding linear
combinations P°(t,) and D°(t,) can mix. This arises because the peripheral atoms do not
define a perfect sphere and the designation of 1, m quantum numbers is only an approxi-

a)’ zb

O @
|
Vo

5 £

u

O

b)

Fig. 13a,b. Schematic illustrations
of (a) mono- and (b) bicapping of

polyhedral aggregates. C,, and D,
symmetry is assumed to define the '
symmetry labels. Either one (a) or
s° 3 g Fo

two (b) new L functions are gener-
ated respectively



