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Preface

CGI (Computer Graphics International) was started by Professor Kunii in 1983 as CG Tokyo. After its initial

success in Tokyo, the CGI conference were held in the international arena: Switzerland (1988, 1993, 2000), UK
(1989, 1995, 2002), Singapore (1990), USA (1991), Australia (1994), Korea (1996), Belgium (1997), Germany
(1998), Canada (1999), and Hong Kong (2001).

CGI 2003 returns to its origin, Tokyo, which is one of the most active cities in CG, VR, and multimedia in the
world. It is the greatest pleasure for the local organizing committee to have the opportunity of organizing the
memorial CGI2003 in Tokyo once again.

This year, we received a total of 74 submissions by December 9th, 2002, and we assigned at least three
reviewers selected from the international program committee members for all of the papers. According to the scores
given by the reviewers on January 30th, 2003, the local committee selected 38 regular papers and 18 short papers.
Since the quality of the short papers were equally high to that of the regular papers, we decided to do a poster
session with a short oral presentation for all the short papers. We are very pleased with the quality of these paper for
CGI2003, and we must take this opportunity to thank all of the committee members and reviewers for doing an
excellent job within the tight schedule.

The program committee is also grateful to the contributions of three invited speakers, Professor Nelson Max
(Lawrence Livermore National Laboratory), Professor Hans-Peter Seidel (The Max-Planck-Institute Informatik),
and Professor Hiroshi Iseki (Tokyo Womens Medical University). We would like to express our gratitude to all of

the reviewers, program committee and local committee members, and sponsors who contributed to the great success
of CGI 2003.

Finally, I would like to express my sincere thanks to Professor Nadia Magnenat-Thalmann (University of
Geneva) and Professor T.S. Chua (The National University of Singapore) as sub-chair, and to Professor Tomoyuki
Nishita (The University of Tokyo), Professor Yoshio Ohno (Keio University), Professor Katsumori Matsushima
(The University of Tokyo) for their contribution to arrange this conference.

Masayuki Nakajima
Professor, Tokyo Institute of Technology
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Hardware Assisted Multichannel Volume Rendering

Abhijeet Ghosh* Poojan Prabhu'

Arie E. Kaufman* Klaus Mueller*

Center for Visual Computing (CVC) and Computer Science Department
Stony Brook University
Stony Brook, NY 11794-4400, USA

Abstract

We explore real time volume rendering of multichan-
nel data for volumes with color and multi-modal infor-
mation. We demonstrate volume rendering of the Visible
Human Male color dataset and photo-realistic rendering
of voxelized terrains, and achieve high quality visualiza-
tions. We render multi-modal volumes utilizing hardware
programmability for accumulation level mixing, and use CT
and MRI information as examples. We also use multi-board
parallel/distributed rendering schemes for large datasets
and investigate scalability issues. We employ the Volume-
Pro 1000 for real time multichannel volume rendering. Our
approach, however, is not hardware-specific and can use
commodity texture hardware instead.

Keywords: Multichannel, post-classification, transfer
functions, multi-modal, volume mixing, Visible Human,
terrain rendering, parallel rendering, distributed rendering,
image compositing, VolumePro 1000, graphics hardware.

1. Introduction

Many volumetric datasets in medical and scientific ap-
plications have multichannel information. Examples in-
clude the Visible Human Male (VHM) dataset from the Na-
tional Library of Medicine, which has CT, MRI as well as
color information from photographs. Other examples are
aerial or satellite color ortho-photographs of terrains (used
in height-field visualization systems), and multi-spectral
(remote-sensing) satellite data. This type of data offers ex-
citing possibilities for photo-realistic volume visualization
as well as better understanding of the data due to the multi-
channel information. In this paper, we explore hardware as-
sisted volume rendering of multichannel data with examples
taken from the VHM and terrain rendering applications.

Direct volume rendering is expensive in terms of compu-
tation and memory in comparison with surface based ren-

~ {abhijeet, poojan. ari. mueller} @cs.sunysb.edu
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dering. Volume rendering is preferred for medical visual-
ization because of its ability to explore the internal struc-
tures such as bones and tissues. Polygon based rendering
has been traditionally the choice for terrain visualization as
terrains are mostly flat surfaces which can be modelled well
with polygons and real time rendering can be achieved with
texture mapping hardware using various LOD techniques
[7]. Volume rendering still has many advantages for terrain
visualization as the elevation maps can be easily voxelized
into very high-resolution 3D volumes. Also, the voxel-
based model is scene complexity independent, and offers
a better representation for amorphous phenomena such as
clouds, haze and fire. Therefore, volume rendering has been
successfully applied to terrain visualization [3, 18].

Interactive rendering speed is required for the ease of
exploration of large volumetric datasets and had been re-
stricted for some time to high-end graphics workstations,
due to the requirement of trilinear interpolations for image
quality. Direct volume rendering with commodity 2D tex-
ture mapping [1, 5, 16] as well as 3D texture mapping have
been successfully exploited for volume rendering. How-
ever, most PC platform texture mapping hardware have a
limited on-board texture memory (typically 64-128MB) and
slow texture-memory access rates, especially for 3D tex-
tures, limiting the size of volumes that can be rendered in-
teractively in a single pass.

The above factors make special purpose hardware attrac-
tive for direct volume rendering of large volumes. The spe-
cial purpose volume rendering hardware VolumePro 500
[13], which evolved out of our Cube-4 architecture [14],
supports real time frame rates (30 frames/sec) for a 256>
volume. The second generation hardware, the VolumePro
1000, is able to associate multiple channels of information
(vector) with a voxel, not just a scalar density. It also has the
capability of rendering super-volumes (i.e., volumes larger
than the on-board memory) in real time with multi-pass ren-
dering, and its pipeline is programmable, similar to com-
modity hardware. Given that this hardware is in its initial
years of development, we hope that with future develop-
ments, the price/performance ratio will be more attractive.



In this paper, we demonstrate a post-classified single
pass volume rendering of multichannel data (e.g., RGBa
color volumes and multi-modal rendering of CT and MRI
data) with graphics hardware, and multi-board real-time
rendering for large datasets. We employ the VolumePro
1000 for real time rendering of multi channel data. How-
ever, our approach is not specific to VolumePro and can be
implemented on commodity texture hardware as well.

Section 2discusses the modeling and rendering of the
VHM color volume and issues with transfer functions and
gradients for multichannel data. We also explore multi-
modal visualization of the CT and MRI datasets of the
VHM in Section 3. Multi-board rendering for large datasets
is discussed in Section 4. In Section 5, we briefly discuss
the rendering pipeline of the VolumePro 1000 and some im-
plementation issues. Alternative texture mapping hardware
rendering schemes are also proposed. Finally, we discuss
realistic terrain modeling and navigation as an application
in Section 6.

2. Multichannel Color Volume Rendering

Color photographic volumes greatly simplify the task of
creating realistic volume rendered images as the appropriate
color for each voxel is already known from the photographs.
Photographic volumes however offer a new challenge: de-
termining the opacity for each voxel in the dataset. In tra-
ditional volume rendering, the design of effective color (1D
to 3D mapping) and opacity (1D to 1D mapping) transfer
functions for meaningful exploration of the data has been
challenging [15]. In contrast, volume rendering from pho-
tographic data requires an opacity transfer function from the
vector color fields (3D to 1D) and which is complicated by
the non-linear nature of color spaces.

A way to solve this problem is to associate opacity values
for the color voxels from an auxiliary density volume, such
as CT, if available. There are two problems with this ap-
proach: a modality such as CT is good for external bound-
aries but does not capture internal details such as soft tissues
well and the density volume has to be registered with the
photographic volume. Registration of a large volume such
as the VHM is difficult to automate.

Hence, we approach the direct volume rendering of the
VHM color volume from the photographic information it-
self. We use the CIE L" u” v" color space to obtain a percep-
tually uniform representation of the color volume [4]. The
L" component corresponds to the linear lightness of color,
and hence has high values for bright areas of the volume
(e.g., bones, skin and light colored organs such as the brain)
(see Fig. la). The u" component captures the chromatic
changes in the red-green colors. Hence, it is sensitive to
changes in the “redness” of tissues (e.g., muscle to bone)
(see Fig. 1b). Our hardware rendering of the VHM is able

(a) (0)

Figure 1. Multichannel volume rendering: (a)
L" color component used as the density. (b)
u" color component used as the density.

to accurately simulate these properties of the color space.
Currently, graphics hardware can store information in up
to four fields, typically meant for RGBa. We assign the
RGB information from the slices and the density informa-
tion from the corresponding L* or " color component that
we calculate in a pre-process.

We propose a way to incorporate color difference gra-
dients for shading in hardware rendering. Gradients can
be calculated in hardware based on the voxel information.
Hardware programmability allows us to access information
of the neighboring voxels, which we can use for various
kinds of gradient calculation. The changes in color values
along X, Y and Z, expressed as the triple (grad.x, grad.y,
grad.z), is the color difference gradient vector. We imple-
ment color difference gradient magnitude calculation with
hardware (see Fig. 2a) by using the difference of the in-
formation in the Red channel across a voxel along the X
direction as grad.x, and likewise for the other two color
channels. The perceptual difference between two colors is
to a good approximation proportional to the Euclidean dis-
tance between them. This is specially true for the CIELUV
space. For color difference gradients in the CIELUV space,
we sacrifice the true color volume rendering due to the lim-
ited number of color channels and render only with pseudo
colors from an RGBa transfer function (see Fig. 2b).

We also incorporate gradient boundary enhancement by
using first and second order directional derivatives along the
gradient direction [11]. The first derivative in the direction
of the gradient is the gradient magnitude itself and the sec-
ond directional derivative can be well approximated by the
gradient of the gradient magnitude. The first directional
derivative can be currently calculated in hardware render-
ing. For the second directional derivative, we pre-calculate
the first directional derivative and store them in separate
channels. Then, using the existing algorithm, calculate the



(a) (0)

Figure 2. Multichannel volume rendering with
hardware assisted gradients: (a) Color differ-
ence gradients of RGB color space. (b) Gra-
dients of LUV space with second derivative
along gradient direction.

gradient based on the information in these channels, result-
ing in second directional derivative on the fly (see Fig. 2b).

3. Multi-Modal Volume Rendering

In this section, we describe real-time multi-modal vol-
ume rendering. Various levels (image, accumulation and il-
lumination) of volume mixing and rendering pipelines have
been proposed for multi-modal rendering [2]. Image level
intermixing is not efficient as it requires one rendering pass
per volume and an additional merging, and also does not
produce good quality visualization. Though accumulation
level mixing produces good quality visualization, it is a
slow process (mixing happens on a per sample basis along
the ray) and our aim is to accelerate this using hardware. In
our scheme, each modality is associated with a color chan-
nel for single-pass rendering in hardware. This scheme also
ensures a color coding scheme for information from the dif-
ferent modalities. For the purpose of demonstration, we use
information from two kinds of volumes, CT and MRI of the
VHM dataset. However, our scheme is generic enough to
be used for other multi-modal datasets.

A simple but lossy scheme for mixing data from two
modalities such as CT and MRI is to sample from both us-
ing a density threshold, assigning value to the voxel from
CT if the corresponding CT density is above the threshold
(high density for bones and surfaces) and from MRI other-
wise (low density for soft tissues). Hence, we get the best of
both modalities. We use red color for MRI (density infor-
mation replicated to Red and « channels) and gray for CT
(density information replicated to all four RGBa channels)
(see Fig. 3a) as our color coding scheme.

(a) (b) (c)

Figure 3. (a) Simple multi-modal volume mix-
ing of CT and MRI data by sampling based on
density threshold. Mixing with arithmetic op-
eration: (b) gradients specified on CT while
MRI is rendered as a point cloud, and (c) ren-
dering with gradient modulation.

The above approach has the drawback of information be-
ing lost due to the thresholding during sampling. A better
way to implement mixing would be to let the user select
the threshold while exploring the data. We achieve this by
employing the arithmetic and logical operation supported in
hardware. We store the CT and MRI information in separate
fields (color channels in hardware) of the voxel. Then, we
compute CT - MRI and MRI - CT simultaneously and out-
put the results of this Diff operation (with negative values
clamped) on two separate color channels (green and blue
in our case). The result is that for every voxel, only the
greater of the two components of the voxel contributes to
the final accumulation along the ray. This scheme is not
lossy and the segmentation can be dynamically altered us-
ing transfer functions for data exploration. One issue that
arises is that gradients need to to be calculated across the
different modalities separately since they represent differ-
ent volumes and this may not be supported in hardware.
Hence, we specify gradients to be calculated only from one
modality (voxel field) at a time, and not on the entire (multi-
modal) voxel (see Fig. 3b). The above mixing scheme is
used for the color channels only (for color coding), while
we use Max(CT, MRI) for the a channel for well defined
iso-surfaces using gradient modulation (see Fig. 3c).

Another approach to mixing is inclusive opacity, where
all the volumes contribute to the voxel final color and/or
opacity. A convenient way to identify voxels overlapped by
both CT and MRI is by rendering them using a third or-
thogonal color (red in our case). We render the multi-modal
volume with the function 1 - (CT - MRI) - (MRI - CT) for
the red channel corresponding to voxels with information
from both modalities. We still use the Diff operator for the
green and blue channels and the Max operator for the «
channel (see Fig. 4). More sophisticated operations such as
conditionals should be soon available in graphics hardware
adding flexibility to the volume mixing schemes.



(a) (b)

Figure 4. Multi-modal volume rendering with
inclusive opacity: (a) Voxels with information
from both CT and MRI; (b) Voxels with more
CT.

4. Multi-Board Rendering

We utilize multiple units for rendering large volumetric
datasets interactively. Many such visualization systems ex-
ist, ranging from those using multiple CPUs and graphics
pipes in parallel [6] to cluster-based systems using special-
purpose hardware such as VolumePro 500 [8, 12]. Here, we
investigate the efficient parallelization of multiple graphics
hardware boards on the PC platform.

We implement image-partitioned rendering by loading
the entire volume on all the available boards, but restrict-
ing the range of the image and depth buffers to be filled by
each board. This way, we distribute the rendering task to
the boards uniformly. A limitation of this approach is that
the size of the volume that can be rendered is limited by the
memory size of the each board. Therefore, super-volumes
have to be rendered using object-partitioned parallelism. A
super-volume is divided into multiple sub-volumes, each of
which can fit on one on-board memory. Each board renders
its sub-volume and the resulting images have to be compos-
ited in order of depth. Hence, object-ordered parallelism
seems more useful for large datasets.

We investigated distributed rendering on multiple PCs
with one rendering engine per node as PC architecture does
not commonly support multiple graphics boards. We setup
one node as the master (control) and the others as rendering
slaves. The master distributes the viewing parameters per
frame to the slaves and collects the rendered images from
them for compositing and display on a per frame basis. The
slaves render their corresponding sub-volume after receiv-
ing the viewing parameters and send the rendered image to
the master once every frame. This setup requires a high
bandwidth low latency interconnect and network interface
technology, such as Myrinet or Gigabit Ethernet, to support
the sustained heavy network traffic.

Image compositing of rendered sub-volumes can be a
computationally expensive task as the compositing opera-

(a) (b) ©

Figure 5. Multi-board volume rending: (a)-(b)
rendered sub-volumes; and (c) image com-
posited on texture mapping hardware

tor has to be applied over every pixel of the image. We
utilize the register combiner units on the texture mapping
hardware (GeForce2) to carry out this per-pixel composit-
ing and display at the master node in an efficient hardware
accelerated fashion (see Fig. 5). The available sustained
network bandwidth as well as the loading of the image data
into texture memory are the overhead in this distributed ren-
dering scheme and cost a few frames in performance.

We can also use multiple boards to cache large volumes
ahead of rendering and at run-time only render the desired
sub-volume. This is useful for terrain visualization (see
Section 6) where the terrain may be large but only portions
are visible at any point. Caching has been utilized for walk-
throughs for reusing previously rendered images in subse-
quent frames [17]. We divide the terrain volume into slabs
that can fit in the on-board memory. This way, we maintain
real time frame rates for a fly-through by rendering only rel-
atively small slabs at a time. This scheme also helps over-
come the loading-unloading latency during fly-through as
all required slabs are already on-board.

5. Implementation with VolumePro 1000

VolumePro 1000 supports real-time volume rendering
of up to 513% volumes. The hardware performs the fol-
lowing basic operations on data at voxel or sample points:
(1) Gradient estimation (central difference), (2) Classifica-
tion/Interpolation (trilinear), (3) Illumination, and (4) Com-
positing. Alpha correction, accumulation, and early ray ter-
mination are included in the compositing process. The vox-
els in VolumePro memory are composed of up to a maxi-
mum of 4 fields. The classification function of VolumePro
consists of transfer functions for color and a lookup and
arithmetic and logical units.

We implement multichannel volume rendering with Vol-
umePro 1000, utilizing calls of the Volume Library Inter-
face (VLI) (C++ API for VolumePro). We render the color
and multi-modal volumes on the VolumePro by assigning
8 bits per color channel or modality to a separate field of



the voxel. These fields can also be used to tag segmented
data. Mapping of the voxel fields through transfer function
LUTs is supported in VolumePro. This can be implemented
with commodity texture hardware using multi-texturing and
dependent texture lookups. The ALU units of VolumePro
provide additional programmability, similar to the register
combiner units of commodity graphics hardware.

We down-sampled the original VHM photographs from
a resolution of 2048 x 1216 pixels to 512 x 256 pixels.
Our color space conversion was performed by first convert-
ing RGB to CIE XYZ space using the XYZitu601-1 (D65)
standard conversion matrix, and then converting to CIE L
u” v" color space.

For multi-modal volume rendering, we modulated each
voxel field with a separate transfer function and used the
ALU units for implementing the Diff and Max operation for
volume mixing. CT slices from the VHM are of 512 x 512
resolution and the MRI slices are 256 x 256. Hence, we first
interpolate the MRI slices to 512 x 512 resolution. Also,
the MRI data is available for every fourth slice of the CT.
Therefore, we interpolate between slices with a large filter
support to smooth out the staircase effect.

Though we experimented with multi-board VolumePro
1000 rendering on a single machine, we discovered it to be
inefficient due to the PC architecture. We solve this issue
by switching to distributed rendering with object ordered
parallelism. Our test bed is a dual node PC cluster with one
VolumePro per node. The nodes are connected with a high-
speed 1 Gbps Myrinet point-to-point connection and we use
the low level API GM for packet transfer over the Myrinet.

6. Applications and Results

We create realistic visualization of volumetric terrain as
another application of multichannel color volume rendering
on VolumePro 1000. One of the primary sources of data in
terrain visualization is the terrain height field and the cor-
responding texture of the terrain. The latter is typically ob-
tained from an aerial or satellite ortho-photograph. We con-
struct the terrain dataset by first voxelizing the height-field
data, creating an iso-surface of voxels. We scale all heights
in our height-field data to a maximum height of 64 voxels
as terrains do not generally have sharp variations in altitude.
The terrain dataset is constructed as an RGBa volume, with
one channel per field. At location (x. y, z), we obtain RGB
information from the corresponding (x. z) location of the
terrain ortho-photograph (texture) (see Fig. 6a). For the o
channel we assign a constant high value in order to make
the surface opaque.

Finally, we utilize VolumePro 1000 ability to embed
polygonal objects within volumes to create the visual ef-
fect of an F-15 flying over volumetric terrain (see Fig. 6b).
Though great for visualization, this is a costly process. We

o (b)

Figure 6. (a) Original ortho-photograph (512 x
512) of the terrain; (b) High quality multichan-
nel volume rendering of terrain (1024 x 64 x
1024) with embedded polygonal F-15.

Figure 7. Multichannel volume rendering of
volumetric terrain with amorphous clouds

also produce high quality rendering of terrain with amor-
phous phenomenon such as clouds (see Fig. 7) and achieve
interactivity with hardware volume rendering.

Our experiments are conducted using VolumePro 1000
boards with 1GB of on-board memory. Some of this mem-
ory is allocated for on-board image and depth buffers.
Hence, we restrict the largest 32-bit RGBa color volume
in a single pass to 950MB. For the visible Human Male,
this evaluates to 512 x 256 resolution per slice and a total
of 1871 slices. We divide the terrain volume into slabs, and
restrict the slab size to 1024 x 64 x 1024. We cache three
such slabs on one board at a time for a total volume size of
3072 x 64 x 1024.

For our parallel rendering experiments, we have exper-
imented with up to four boards in parallel PCI (33MHz-
32bit) slots of a Pentium III 1GHz machine, as well as in
parallel PCI (66MHz-64bit) slots of an Athlon 1.2 GHz
machine (see Table 1). Higher bandwidth of the 66 MHz-
64bit PCI bus gives consistently better performance. Un-
fortunately, the PCI slots on these machines share the same
PCI bus and hence the performance does not scale well with
the number of boards. Our distributed rendering experi-



Table 1. Frame rates for multi-board parallel
rendering of VHM on one PC

PCI bus Single Board | 2 Boards | 4 Boards
onl1PC | onlPC
33MHz-32bit 8 14 18
66MHz-64bit 14 19 24

ment with VHM was configured using two nodes each with
512 x 256 x 936 sub-volume and one or two boards. The
frame rates for a 66MHz-64bit PCI bus are 25 for 1 board
and 33 for 2 boards per node. Tiling smaller slabs of size
1024 x 64 x 1024 within each board for volumetric terrain
visualization provides real-time performance of 32 and 48
frames/sec for 32MHz-32bit and 66MHz-64bit PCI bus, re-
spectively.

7. Conclusions and Future Work

We have demonstrated high-quality visualization of mul-
tichannel data with volume rendering through proper mod-
eling of the data and hardware assisted single pass render-
ing. We achieve various mixing schemes for single pass
multi-modal volume rendering using hardware units. In-
teractive speed has been achieved for super-volumes using
multi-board rendering. Though we have used special pur-
pose VolumePro 1000, our approach is generic and can be
realized on commodity texture hardware too.

We are in the process of setting up a visualization PC
cluster, initially with 12 rendering nodes and a display
client. One issue that we need to resolve in this cluster is
that of fast image composition, maybe using the efficient bi-
nary swap composition strategy [9]. We intend to overcome
the slow reads of image data from the rendering unit using
special-purpose compositing hardware [10, 12], in order to
match the compositing speed with that of the rendering.

Acknowledgements

This work is supported by ONR grant NO0O0140110034.
We thank Andy Vesper and TeraRecon for information on
the VolumePro 1000, and thank Kevin Kreeger, Wei Li and
Huamin Qu for valuable discussions.

References

[1] B. Cabral, N. Cam, and J. Foran. Accelerated volume ren-
dering and tomographic reconstruction using texture map-
ping hardware. In Proc. ACM Symp. on Volume Visualiza-
tion, pages 91-98, 1994.

[2] W. Cai and G. Sakas. Data intermixing and multi-volume
rendering.  Computer Graphics Forum, 18(3):359-368.
September 1999.

[3] D. Cohen-Or, E. Rich, U. Lerner, and V. Shenkar. A real-
time photo-realistic visual flythrough. /EEE Trans. on Visu-

(4]

[5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

alization and Computer Graphics, 2(3):255-265. September
1996.

D. Ebert, C. Morris, P. Rheingans, and T. Yoo. Designing
effective transfer functions for volume rendering from pho-
tographics volumes. IEEE Trans. on Visualization and Com-
puter Graphics, 8(2):183-197, April-June 2002.

K. Engel, M. Kraus, and T. Ertl. High quality pre-intergrated
volume rendering using hardware-accelerated pixel shading.
In Proc. SIGGRAPH/Eurographics Workshop on Graphics
Hardware 2001, pages 9-16, 2001.

J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter,
A. Keahey, and C. Hansen. Interactive texture-based volume
rendering for large data sets. I[EEE Computer Graphics and
Applications, 24(4):52-61, July-August 2001.

P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust,
and G. Turner. Real-time, continuous level of detail render-
ing of height fields. In Proc. SIGGRAPH 96, pages 109-118,
August 1996.

S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich.
Scalable interactive volume rendering using off-the-shelf
components. In Proc. Symp. on Parallel and Large-Data
Visualization and Graphics, pages 115-121, October 2001.

K. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume
rendering using binary-swap compositing. /[EEE Computer
Graphics and Applications, 14(4):59-68, July-August 1994.
L. Moll, A. Heirich, and M. Shand. Sepia: Scalable 3D
compositing using PCI pamette. In Proc. IEEE Symp. on
Field Programmable Custom Computing Machines, pages
146155, April 1999.

C. Morris and E. Ebert. Direct volume rendering of photo-
graphic volumes using multi-dimensional color-based trans-
fer functions. In EUROGRAPHICS - IEEE TCVG Symp. on
Visualization, pages 115-124, 2002.

S. Muraki, M. Ogata, K. Ma, K. Koshizuka, K. Kajihara,
X. Liu, Y. Nagano, and K. Shimokawa. Next generation su-
percomputing using PC clusters with volume graphics hard-
ware devices. In Proc. IEEE Supercomputing Conference,
November 2001.

H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The volumepro real-time ray-casting system. In Proc. SIG-
GRAPH 99, pages 251-260, August 1999.

H. Pfister and A. Kaufman. Cube-4: A scalable architecture
for real-time volume rendering. In Proc. IEEE Symp. on
Volume Visualization, pages 47-54, October 1996.

H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann,
W. Shroeder, L. Avila, K. Martin. R. Machiraju, and J. Lee.
The trasfer function bakeoff. IEEE Computer Graphics and
Applications. 21(3):16-22, May-June 2001.

C. Rezk-Salama., K. Engel, M. Bauer, G. Griener, and
T. Ertl. Interactive volume rendering on standard PC graph-
ics hardware using muti-textures and multi-stage rasteri-
zation. In Proc. SIGGRAPH/Eurographics Workshop on
Graphics Hardware 2000, pages 109-118, 2000.

J. Shade, D. Lischinski. D. Salesin, T. DeRose, and J. Sny-
der.  Hierarchical image caching for accelerated walk-
throughs of complex environments. In Proc. SIGGRAPH
96. pages 75-82. August 1996.

M. Wan, H. Qu, and A. Kaufman. Virtual flythrough over
a voxel-based terrain. In IEEE Virtual Reality Conference,
pages 53-60, 1999.



Interactive Transfer Function Modification For Volume Rendering Using
Compressed Sample Runs

Vivek Srivastava

Uday Chebrolu

Klaus Mueller

Center for Visual Computing, Computer Science, Stony Brook University

Abstract

This paper describes a software-based method for
interactive transfer function modification. Our approach
exploits the fact that, in general, a user will rarely want to
modify the viewpoint and the transfer functions at the same
time. In that spirit, we optimize the latter by first fixing the
viewpoint and then storing a compressed list of samples
along each ray. Then, each time the transfer function is
modified, the algorithm traverses the compressed sample
lists, decompressing the runs and compositing the newly
colored samples along each ray until full opacity is reached.
Since the expensive sample interpolation and shading is no
longer necessary, we can obtain near-interactive framerates
for a variety of datasets, while our RLE-based compression
of linearly varying sample runs helps keep the storage com-
plexity down, with little decompression overhead. Decom-
pression cost is reduced by storing decompression results in
an on-the-fly constructed 2D table.

1. Introduction

A volumetric data object is described as a space-filling
three-dimensional grid of discrete sample points, which, in
turn, support the interpolation of any arbitrary point within
the grid’s 3D bounding box. A great variety of disciplines
generate, use, and modify volumetric data. Examples are the
medical field in diagnosis and surgical simulation, engineer-
ing in CAD/CAM prototyping, the oil and gas industry in
natural resource exploration, designers and artists in virtual
sculpting and industrial design, educators in teaching biol-
ogy, chemistry, and anatomy, the computer game industry in
the generation of realistic natural phenomena, computa-
tional scientists in scientific data exploration, and the busi-
ness world in visual data mining.

Volume rendering is the process of exploring the volu-
metric data using visuals. The exploration process aims to
discover and emphasize interesting structures and phenom-
ena embedded in the data, while de-emphasizing or com-
pletely culling away occluding structures currently not of
interest. In volume rendering, two main instruments exist
that control the exploration process: view navigation and
transfer functions. Both are essential. The former deter-
mines the spatial position and orientation from which the
user observes the scene. The latter controls the look-and-
feel of the scene itself, which is done by ways of the transfer
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functions that map the raw object density data to color and
transparencies. This also constitutes a navigation task, per-
formed in a 4D transfer function space, assuming 3 axes for
RGB color and one for transparency (or opacity). Note that
while spatial navigation also exists in the surface rendering
of polygonal objects, transfer function navigation is unique
to volume rendering.

Transfer function space navigation can be a time con-
suming task for two main reasons: (i) the space to be
explored is large, and (ii) the volume rendering is, at least at
the present time, only interactive when supported by hard-
ware [2][5][17][21][23]. Hardware solutions, however, are
only practical for moderate dataset sizes, unless expensive
machines are used [20]. On the other hand, interactive soft-
ware solutions also exist, and a prominent representative for
these is the shear-warp algorithm [12], which, however, has
a considerable quality-speed trade-off, especially at odd
viewing angles [25].

Addressing the complexities associated with the magni-
tude of the transfer function space, a number of techniques
have been devised that use gradient histograms and other
derived data to point out interesting locations in transfer
function space [1][10][11][26]. The user may then use these
hints to perform a more detailed search around these critical
points. Another suggested strategy is to render a large num-
ber of images with arbitrary transfer function settings and
present these to the user, who then selects a subset of these
for further refinement by ways of genetic algorithms. This
approach is taken by the Design Galleries project [16],
which is based, in part, on the method published in [8]. A
good sample of the existing approaches were squared off in
a recent panel, termed the ‘Transfer Function Bake-off’, at
the Visualization 2000 conference [22].

Common to all transfer function exploration efforts is
the need for rendering the volume using the new settings. A
key observation here is that the user rarely changes the
viewing parameters and the transfer function simulta-
neously. Usually, the object stays fixed in space, and only
the transfer function is modified, or vice versa. with the rea-
son for this being that the user is simply too occupied with
one of the two tasks to deal with the other. While view navi-
gation can use temporal coherencies to speed up the render-
ing [3][19][27], for this research we sought to identify the
coherencies that exist in the task of transfer function naviga-
tion. We start by realizing that the main work in volume ren-
dering is formed by the following pipeline: interpolation of
the ray samples, illumination (shading), coloring, and com-



positing. Since we leave both the view and the light source
position unchanged, there is no need to perform the sample
interpolation and shading for every new transfer function
setting. Instead, we may cache away the densities and
shades of the samples for repeated use in the transfer func-
tion exploration process. This was recognized quite some
time ago in [15]. A caveat with this approach, however, is
that all samples along a ray, within the limits of the vol-
ume’s bounding box, are now potentially visible, depending
on the user’s choice of transfer function setting. Hence, they
must all be cached, which gives rise to a storage complexity
approaching that of the volume. A suitable compression
scheme is clearly needed, with the requirement of fast
decompression speed since our main goal is to achieve an
interactive system for transfer function modification. Note
that our approach uses a pure software solution in an attempt
to explore a technique that would work even in conjunction
with larger volume, for which the use of texture mapping
hardware may be less attractive. On the other hand, there is
also a sizable class of volumes with sparse, yet space-filling
features, such as arteries or nerve cells, where software ren-
dering speed can actually match that of brute-force texture
mapping hardware implementations[18].

Our paper is structured as follows. First, in Section 2,
we provide some preliminary background and the theoreti-
cal aspects of our work, while Section 3 describes the actual
implementation. Section 4 reports on the results, and Sec-
tion 5 concludes with final remarks and pointers for future
work.

2. Theory

2.1. Preliminaries

The low-albedo volume rendering integral can be writ-
ten as follows:

I 5
r(u,v) = J.C(d(s))’c(d(s))exp —_"t(d(t))dt ds (1
0 0

where r(u,v) is the value of the ray spawned at image coor-
dinate (u,v), d(s) is the (interpolated) volume density at
location s along the ray, and ¢ and 7T are the color and extinc-
tion mapped to d, respectively, via the transfer functions.
Note, that ¢ is a 3-vector of (r,g, b). Since the continuous
integral is, in the general case, not solvable analytically, it is
commonly written and evaluated in discrete form:

L/As i=1
r(u, v) = Z c(d(iAs))t(d(iAs))exp —Z T(d(jA1))Ar|As(2)
i=0 i=0

where As is the ray sampling interval. If we replace the
exponential function by its Taylor series, we get the familiar
compositing equation [13]:
L/As i-1
r(u,v) = Z c(d(As))o(d(As)) H (1 -o(d(Ar))) (3)
i=0 j=0

where o is the sample opacity, normalized for sample dis-
tance when As =1 [14].

Let us first concentrate on the continuous form of the
low-albedo volume rendering integral given in (1), and the
fact that we will be re-using the d(s), i.e., the interpolated
samples along the ray. This seems to be a simpler task than
having to solve (1) directly from the raw volume, involving
interpolation. Can we now obtain an approximate analytical
solution for r(u,v), or at least a fast discrete one? We shall
investigate this next.

An effective way to go about the problem is to try and
decompose c, T (and perhaps also d) into sets of basis func-
tions, and then just modify the weights of these basis func-
tions according to a new transfer function setting before
recombination. One such decomposition is the Fourier
transform, or the related cosine transform. Kaneda et.al. [9]
attempted this a few years ago, but only succeeded for the
color transfer function. For the Fourier approach to work,
the inner integral of (1) needs to remain fixed as a multipli-
cative constant, and hence the opacity transfer function
remains fixed as well, which prevents the Fourier method
from being able to change the transparencies of exterior and
interior structures on the fly.

But the Fourier series is not the only mechanism to
obtain a decomposition into basis functions. Another set of
basis functions can be obtained by a series of polynomials,
which is described next.

2.2. Polynomial fit

We may express the transfer functions as well as the list
of sample densities along a ray as polynomial functions,
which could be obtained by a least squares fit. We will get:

1
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Recall that ¢ is a 3-vector, and so will be the a-coefficients.
Note that we will only need to find the coefficients for the
¢(d) and t(d) on the fly, the coefficients for d(s), on the other
hand, will be computed in a pre-processing step. We shall
now express (1) with these polynomials:
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r(u,v) = [p(p3() - p5(P3(s))exp| [ pa(pi(0)dt |ds (5)
0 0
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r(u,v) = j1)4 (s)-p5 (s)exp —JpG (t)dt\ds (6)
0 0
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Using the first two terms of the Taylor series expansion of
exp(x):



