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PREFACE

This work develops the theoretical basis for an efficient method for the
inductive calculation of the stable homotopy groups of spheres, nf. Most of
the steps of this method are algorithmic and are done by computer. We will
apply this method to compute the first 64 stable stems. This method is based
upon the analysis of the Atiyah-Hirzebruch spectral sequence:

2

(*) E2 - HBP ® n0 —> n__ BP.
n,t n t n+t

H,BP and n,BP are well known. Moreover, the Hurewicz homomorphism

h:n,BP — H,BP is a monomorphism. Therefore, E” L S 0 if t # 0, and
n

E: 6= h(nnBP) which is also well known. If nf is known for t < T then, with

the exception of one step, it is algorithmic to deduce the composition series

Image [d":E —> E

], 2 =r = T+1, of nS. The determination of nS
r,T-r+1 *7o,T T T

from this composition series, the solution of the "additive extension

problem", is accomplished using Toda brackets.

A distinctive feature of this method is that all the hard computations are
done by computer. This includes the determination of differentials using
Quillen operations and the computation of

r+

E'! = Kernel [d":E , —E

r I
i, & 1 / Image [d :E — E_ 1.

;-r,t+r—1 N+r, t-r+1 it

On the other hand there are two key steps which require human intervention in

the computation of each nf:

(1) the matching of the list of "new" elements in degree T+1 which are hit by
differentials with the list of "new" elements in degree T+2 on which

nonzero differentials originate;

(2) the solution of the additive extension problems.
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Chapter 1 is devoted to the exposition of the background of this computation
and to a detailed description of the method we will use. Even the most
experienced reader should read the exposition of our notation for elements of
the stable stems at the end of that chapter. 1In Chapter 2 we develop the
three and four-fold Toda bracket methods which are used to solve extension
problems. In Chapter 3 we give a global computation of the spectral sequence
in the first eight rows. In higher rows our computations are inductive and
rarely achieve a global understanding of the rows beyond the range of our
computations. In Chapter 4 we recall some facts about the Image of J and use
them to compute all the differentials which originate on E?o for n = 70.
Chapters 5 to 7 contain our calculations of the first 64 stable stems. In
Chapter 8 we identify the elements 94 € n§0 and 95 € n§2 of Arf invariant one
as well as the Mahowald elements ng € niz and ng € n§4. The new proof that 95
exists and has order two is based upon Mahowald’s ideas [34A] and the
computations of this paper. It is a rewording of a detailed proof which
Mahowald sent to me. We also show that ne has order four. We conclude with
Appendices 1 - 4, 7 which contain tables that summarize and give references
for all the computations of this paper. In the fifth appendix, we discuss the
Fortran computer programs which are used in this computation. A copy of the
program listings is available from the author. The most important output of
these programs is contained in the last sections of Chapters 4 - 7. The

sixth appendix depicts the mod 2 Adams spectral sequence through degree 64.

]

¢

We will work exclusively at the prime two. Our methods, however, apply at all
primes. Of course, the computations at odd primes would be very different
from these computations at the prime two. In addition the size of the numbers
involved at the prime two reached 232, the limit of the computer, requiring

the use of some multiprecision arithmetic. The computations at odd primes

would involve much larger numbers.
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CHAPTER 1: INTRODUCTION
1. History of the Problem

The calculation of the stable homotopy groups of spheres is one of the most
central and intractable problems in algebraic topology. In the 1950s Serre
[57] used his spectral sequence to study this problem. In 1962, Toda [60]
used his triple brackets and the EHP sequence to calculate the first 19 stems.
These methods were later extended by Mimura, Mori, Oda and Toda [44], [45],
[46], [50] to compute the first 30 stems. In the late 1950s the study of the
classical Adams spectral sequence was begun [1]. Computations in this
spectral sequence are still being pursued using the May spectral sequence and
the lambda algebra. The best published results are May’s thesis [39] and the
computation of the first 45 stable stems by Barratt, Mahowald, Tangora [10],
[37] as corrected by Bruner [16]. The use of the BP Adams spectral sequence
on this problem was initiated by Novikov [43] and Zahler [62]. Its most
spectacular success has been at odd primes [42]. A recent detailed survey of
the status of this computation and the methods that have been used has been

written by Ravenel [55].

An exotic method for computing stable stems was developed in 1870 by

Joel Cohen [19]. Recall [20] that for a generalized homology theory E, and a

spectrum X there is an Atiyah-Hirzebruch spectral sequence:

(1.1.1) E° = H(XE) —> E_ X.
N,p N P N+p

Joel Cohen studied this spectral sequence with X an Eilenberg-Maclane spectrum

and E equal to stable homotopy or mod p stable homotopy. His idea was to

take advantage of the fact that in these cases the spectral sequence is

converging to zero in positive degrees. Since the homology of the

Eilenberg-MaclLane spectra are known, one can inductively deduce the stable



stems. This is analogous to the usual inductive computation of the cohomology
of Eilenberg-MaclLane spaces by the Serre spectral sequence [17]. In that
example, however, all the work can be incorporated into the Kudo transgression
theorem. Joel Cohen was able to compute a few low stems, but the computation
became too complicated to continue. His method was discarded since the Adams
spectral sequence computations seemed much more efficient. In 1872, however,
Nigel Ray [56] used this spectral sequence with X = MSU and E = MSp. He took
advantage of the fact that H,MSU and MSp,/MSU are known to compute the first 19
homotopy groups of MSp. Again this method was discarded since David Segal had
computed the first 31 homotopy groups of MSp by the Adams spectral sequence

and his computations were extended to 100 stems in [31].

My interest in Atiyah-Hirzebruch spectral sequences began in 1878. In a joint
paper with Snaith [32] we studied the case where X is BSp and E, is stable
homotopy. The methods we developed there, in particular the use of
Landweber-Novikov operaiions to study differentials, were clearly applicable
to a wide class of examples. In 1983, I observed that if Joel Cohen’s method
were applied to the case where X is BP and E, is stable homotopy then the
computations would be greatly simplified over Cohen’s case because of the
sparseness of H_,BP and because Quillen operations could be used to compute the
differentials. So, I began computing at the prime two. I soon discovered
that the computations became too complicated to do by hand, but since they
were mostly algorithmic they could be done by a computer. Using an IBy PC/AT

micro-computer I was able to compute the first 64 stable stems. This work is

the account of that computation.

Kaoru Morisugi informed me that in 1872 he attempted to use this method to
compute nf at the prime three, but he became bogged down with technical

problems.



2. The Brown-Peterson Spectrum and Quillen Operations

In this section we list some of the basic facts about the Brown-Peterson
spectrum BP. The notation introduced here will be used throughout the

computation.

Let MU denote the unitary Thom spectrum. By the Pontryagin-Thom isomorphism,
n,MU is isomorphic to Qg, the ring of bordism classes of compact smooth
manifolds without boundary which have a complex structure con their stable
normal bundles. Using the Adams spectral sequence, Milnor [43] computed m MU
to be a polynomial algebra over Z with one generator in each even degree.
Brown and Peterson [15] discovered that when the spectrum MU is localized at a
prime p, it decomposes into a wedge of various suspensions of a spectrum BP.
This spectrum defines a generalized homology theory BP, and a generalized co-
homology theory BP*. We list several basic properties of BP at the prime two.

The standard references are the expositions of Adams [7] and Wilson [61].

(1.2.1) There are M_e H,BP of degree 2(2"-1) such that M_ = 1 and
H,BP = 2(2)[M1,...MN,...].
(1.2.2) The Hurewicz homomorphism h:n,BP — H,BP is a monomorphism.

Henceforth we consider h as an inclusion.

(1.2.3) Define VN € H,BP of degree 2(2“—1) recursively by V0 = 2 and for Nz1:

N-1 ok
V. =2M - } M-V .
N k N-k

k=1

The VN /2, N =z 1, are polynomial generators for H,BP. Moreover, allelhe VN
are in the image of h and mw,BP = 2(2)[V1,...,VN,...]. The V are called the
Hazewinkel generators [22], [23].

(1.2.4) BP*BP is the algebra of BP-operations. These operations act on BP,X
for any spectrum X including BP,S = n,BP and BP,KZ = H ,BP. These operations

are natural. In particular, they commute with the Hurewicz homomorphism h.
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(1.2.5) BP*BP = w,BP[[ T | w is a finite sequence of nonnegative integers]].
The r, are called the Quillen operations [54]. They have the following
properties.

(a) The r, are 2(2)-modu1e homomorphisms.

(b) If f:X — Y is a map of spectra then f,orw = rw0f,. In particular,

her

r oh.
w w

(c) If X is a ring spectrum and A,B € BP,X then we have the Cartan formula

rw(A-B) =Y rw,(A)-rw"(B).

w=w" +W"
In [32] we showed how Landweber-Novikov operations act on the Atiyah-

Hirzebruch spectral sequences for n%BU and nfBSp. The following theorem
shows that the Quillen operations act on Atiyah-Hirzebruch spectral sequences

for BP,X.

THEOREM 1.2.6 Let F be a ring spectrum. Consider the Atiyah-Hirzebruch
spectral sequence for F,BP:

E = HBP ® F = F
N t N+

N, t t

Then each Quillen operation Tw of degree K induces a map of spectral

sequences:

r:EE —E _ .
w N, t N-K, t
These T have the following properties:
(a) The are 2(2)—module homomorphisms.
(b) The r, are natural with respect to maps of spectral sequences induced by
maps of spectra. £
(c) The T satisfy the Cartan formula

r (A‘B) = ¥ r ,(A)-r ,(B) for all A, B € E°.
w w w

W=Ww’+W"
(d) The action of r,on E° is given by Tw ® 1 where the latter Tw is the

usual Quillen operation on H,BP.

(e) dsorw = erdS for all s = 1.



(f) The action of r,on E9”= H,(Es.ds) is induced by the action of r, on ES.

(g) The action of rw on the E° induce an action of rw on Eco = lim E°.

e

(h) The action of r, on E” defined by (g) agrees with the action of r, °n E”

induced by the usual action of the Quillen operations on F,BP = BP_F.
PROOF. Since r, € BPkBP, we can represent To by a map of spectra
rw:XKBP — BP. Since the Atiyah-Hirzebruch spectral sequence is natural we
have an induced map of spectral sequences. All of the properties are
immediate except for the Cartan formula (c). It follows from the observation
that the following diagram must commute up to homotopy:
r

s*BP y > BP

¢/
¢
\\\f r ,Ar

=pABP L, s“BP A s¥BP —2 @, ppABP
s 40"

$*BPABP

Vw=w’ +w"
In this diagram ¢ is product map of BP and ¢ is the pinching map. In each

wedge summand k = k'+k" and T is the switching map.|]

3. The Inductive Procedure

In this section we will describe in detail the inductive procedure that we
will use to compute the stable stems. However, before we apply this procedure
in Chapters 5 to 7 we will digress to compute the first eight rows of the
spectral sequence in Chapter 3 and to study two of the basic ingredi%pts of
our procedure: Toda brackets in Chapter 2 and the image of J in Chapter 4.
This section concludes with an exposition of the notation that we will use to

denote the elements of n?.

Consider the Atiyah-Hirzebruch spectral sequence:

(1.3.1) B2 -HBP e nm —> m
N, t N t

BP.
N+t



Since H,BP is zero in odd degrees we see that in this spectral sequence:

r

E., =0 if N is odd,
(1.3.2) d®*!' = 0 and
E2Nl = Ez”2 for all r.

The Hurewicz homomorphism is given in terms of this spectral sequence by the

following commutative square:

n_BP h > H BP
N N
(1.3.3) l [ x
> , E°
N,O N,O
Since h is one-to-one, it follows that:
© 0 if t 0
(1.3.4) EN . = and
’ n_BP ift =20
0
(1.3.5) E,’O = Z(Z)IVI,...,VN,...].

Thus, there must be nonzero differentials originating on the 0 row so that

e(1)

e(M)
i )

each monomial K(Z—eV --VH in E° survives to E* if and only if K is
divisible by 2% where e = e(1)+---+e(M). We will prove in Chapter 4 that, in
our range of computations, all nonzero differentials which originate on the

0 row land in ImJ ® H,BP. We will assume that ImJ is known. The first step
in our analysis of the spectral sequence (1.3.1) will be to compute all these
differentials which originate on the O row in degrees 2 through 70. This
computation is entirely algorithmic, is done by computer with no human{

assistance and is carried out in Section 4.4. The purpose of this computation

is to record the cokernels of all of these differentials.

The behavior of the following elements in the spectral sequence is the key to

the determination of differentials which originate above the O row.



DEFINITION 1.3.6 Let ¢ € n? have order q and let V € HZNBP. Assume that:
2
(a) ¢-V e Eau N survives to an element of Ei; . for some 2 = r = w;

(b) if r = @ then V = 0;

s

(c) we know all differentials which originate or land on elements of Ezk "

which have a representative in 2q¢ ® H,BP for all s and all O = k < N’
where N' = N if r<wor N = o if I = .

We call such an element ¢-V a ¢-leader.

Note: A ¢-leader can be zero. In that case our assumption is that we know

all differentials which originate or land in Z ¢ ® H_BP.
q

The following unfortunate phenomenon is the obstruction to using
Theorem 1.2.6(e) to computing d* -differentials on ¢-V", degree V" > degree V,

from the d° -differential on a ¢-leader ¢-V.

DEFINITION 1.3.7 Let ¢:V be a ¢-leader, and assume all the notation of
Definition 1.3.6. A nonzero differential d2u(¢-V’) is callled a hidden
differential if:

(a) ¢V’ is also a ¢-leader;

(b) degree V' > degree V;

(c) u<r.

Thus, if there is a hidden differential, the dzu—differentials determined by
dzu(¢-V’) must be computed before the d* -differentials determined by d2r(¢-V)
even though degree ¢-V’ > degree ¢:V. The inductive computation of ni now
proceeds as follows. Assume that the information contained in the following

induction hypothesis is known.



(1.3.8) INDUCTION HYPOTHESIS
(ln) We know nf for 0 = k < N.

(ZN) Write each nonzero differential on a ¢-leader ¢-V e E:r b’ with
a

S

a+b = N, in the form dzr(¢-V) = AV’'# 0 where ¢ € ns, A €Em 5
b b+2r-1

Ve H BP and V' € H BP. Assume that we have "computed"
2a 2a-2r

2r wy _ "

d” (¢-V") = ¥ a A VI for all V" € Hza"BP'

(3N) For each ¢ € nf, 0 < k < N, the ¢-leader of largest known degree is

¢:V where either V = O or degree ¢:V = N+1.

The information in (2N) is called a "tentative differential table" and the
information in (3N) is called a "list of leaders". In condition (2N), the
word computed is in quotation marks because what we assume that we have done
is that we have computed rwodzr(¢-V") = dzrorw(¢-V") for all Quillen
operations Fis of degree 2a"-2a. This would give an accurate computation of
dzr(¢-V“) if there were no hidden differentials. Unfortunately, there are

examples of hidden differentials.

To accomplish the inductive step we must go through the procedure below. We
use the terminology "A € Ei;t transgresses" if A survives to E™N.  In that

case dZN(A) e EXN , a subquotient of ns :
0,2N+t-1 2N+t-1

(1.3.9) INDUCTION STEP

(a) Construct the following list of leaders of degrees N+1 and N+2:

Leaders in Degree N+1 Leaders in Degree N+2 ¢
! B1
« B



2a(i)

Each « € E
i 2a(i),N-2a(i)+1

will either be hit by some BJ or it will transgress
to determine a nonzero element of ni. In either case a transgresses to an
element dza“)(ai) = &i € ni. In the former case &1 = 0, and in the latter
case ;1 # 0.
(b) Search for hidden differentials dzu(B) =, where dzr(B) = a’ was one of
the differentials in the tentative differential table of 1.3.8(2N). If a
hidden differential is found then ai must be removed from the list in (a) and
replaced with a’. Assume that any necessary adjustments of this sort have
been made to the list in (a).
(c) Use Toda bracket methods from Chapter 2 and consequences of differen-
tials which follow from Theorem 1.2.6(e) to make the following deductions:

(i) some of the &1 are zero;

(ii) some of the Bj transgress.
This step is complete when

card {all ;1 = 0} = card (BJI BJ is not known to transgress}.

(d) Construct the following list of all ai, Bj such that ai = 0 and Bj is not

known to transgress:

ai(l) Bj(l)
al(s) Bj(s)
There is a nonzero differential on each Bﬂk) with image some a_“n. Use Toda
1

’

3
bracket methods from Chapter 2, consequences of differentials deduced from

Theorem 1.2.6(e) and ad hoc monoid chain arguments to match which BWk)s hit
j

which « S.
i(h)

(e) Use Toda bracket methods from Chapter 2 to solve the additive extension

problems to determine ni from its composition series (Eerll = r= [(N+1)/2]}.

’

This gives the information required in (1N+1). This step is not absolutely



