CARCL ANNE CGDIN

ORI RO
AR M R M

PR TR A A AR AN Y
SR S R R L

MICROCOMPUTER
MANAGEMENT
AND
PROGRAMMING

CAROL ANNE OGDIN

Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

Library of Congress Cataloging in Publication Data

Ogdin, Carol Anne. (date)
Microcomputer management and programming.

Includes index.

1. Microcomputers. I. Title.
QA76.5.035 1980 001.6'4'04 79-18068
ISBN 0-13-580936-3

©1980 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Editorial/production supervision by Marianne Baltzell
Interior design by Barbara Kelly

Cover design by Edsal Enterprises

Manufacturing buyer: Gordon Osbourne

Printed in the United States of America

10 9 87 6 5 4 3 21

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

MICROCOMPUTER
MANAGEMENT
AND
PROGRAMMING

PREFACE

During the first decade of microcomputers, industry has turned most of
its efforts to training digital logic designers in the rudiments of
programming. Those designers have solved most of the easy problems,
and their skills are being outstripped by the demands for new products
with more capabilities. The complexity in software is reaching a crisis
stage for the traditional designer.

The few interdisciplinarians who ean function well in both digital
logic design and software design are in constant demand, but the supply
is severely limited. The largest remaining pool of talent that can be
drawn upon for satisfying the apparently insatiable microcomputer
business are among the systems and applications programmers and the
systems analysts already dealing effectively with minicomputers and
larger-scale EDP systems. Yet, those individuals have purposely re-
mained aloof from the computer engineering problems and are ill-
equipped to take on microcomputer projects.

Management is, as a consequence, perplexed. Technically sophisti-
cated managers familiar with the vagaries of major software system

xi

xii

PREFACE

implementation are now being asked to manage microcomputer projects,
but those managers, too, are ill-equipped.

This book is aimed at those managers, programmers, and analysts.
Their involvement with microcomputer projects, as users, evaluators,
and implementors is virtually certain. As microcomputers continue
their proliferation, it is clear that distributed computing networks,
manufacturing and process control, and even traditional EDP problems,
will become more and more dependent upon the widespread availability
of cheap computing power. Furthermore, new opportunities for product
development and added sophistication in existing manufactured goods
will continue to be recognized. Those products will demand the sophis-
ticated skills of knowledgable managers, programmers, and analysts.

All of the microcomputer literature has been oriented toward readers
with a firm grasp of digital electronics technology and an ignorance of
software. Little that has been written on micros is addressed to the
reader who has a complete grasp of software design, but negligible
experience with digital logic and computer design. The first instance,
to my knowledge, was the combined November-December 1977 issue of
Mini-Micro Systems which I wrote, and which formed the nucleus for
this book. Within the limited space a magazine provides, I tried to show
software experts the rudiments of computer and logic design. Although
too brief to have been the basis for a complete understanding of these
complex topics, the response to that level of treatment of the subject has
motivated me to produce this more complete effort.

Microcomputers are more than cheap computers. They demand of
the designer an awareness of both software and digital logic principles.
The complete designer is an interdisciplinarian, but it takes about as
long to become proficient at circuit design as it does to grow a good
systems programmer. Few people have time to master both skills.
Managers will find, then, that future complex microcomputer-based
systems will be created by teams of designers, individual members of
which will have specialized backgrounds in either electronics or com-
puter science. The digital designers have learned enough software
skills to be conversant with the problems; nearly all of them have
acquired the ability to read and comprehend (if not create) computer
programs. To balance the team it will remain for the software experts
to acquire enough skills to be able to read and comprehend (if not
create) circuit diagrams for microprocessor-based computer systems.
When, at last, management has assembled a balanced team with
combined hardware and software skills, some of the huge applications
problems can be faced with reasonable certainty of success.

This book is written for managers who need to know enough about
the technology to be able to understand and mediate some of the
disputes that invariably arise among team members. It is intended to
provide a matrix in which the manager can set individual decisions to

PREFACE i xiii

Dbe made so as to place them in proper perspective. Some of the chapters
may be too detailed for a manager’s needs, but a brief skimming of the
chapters can offer some insights into designers’ problems.

This book is also written for programmers and analysts who will be
called upon to solve major applications problems with an unfamiliar
technology. It is intended as a guide to getting started. More, it is
intended as a means for destroying some of the software designer’s
dearest-held myths about how computers and the relevant software
should be designed. Some of the chapters may be too oriented to the
larger issues of management of these kinds of projects, but they are
worth skimming to find out what problems other team members may
have to face.

Microcomputers have come at a time when software engineering is
emerging as a discipline—and none too soon. Just as some of us were
becoming weary of constructing ever-larger and ever more unreliable
software systems, microcomputers have come along as a major simplify-
ing influence on good design practice. This is probably the most
exciting time in history to be in the computer industry. I hope you, too,
will find the joy I feel in creating a new computer to solve a problem
never before broached.

Carol Anne Ogdin

Alexandria, Virginia

CONTENTS

PREFACE «xi

one
THE TECHNOLOGY 1

Evolution of the Micro 2
What Is a Micro? 9

The Trend 16

Why Use a Micro? 16
Will Micros Doom the Maxi?
Chips Aren’t All 18
Skills Required 20

vi CONTENTS

two
MICRO APPLICATIONS 22

One-Chip Micro Applications 23
A Typical Product 25
Microprocessor Applications 317
A Typical Product 33
Single-Board Computer Applications
A Typical Project 40
Microcomputer System Applications
A Typical Application 46

three
COMPUTER ARCHITECTURE 50

Understanding New Computers 57
Registers as Building Blocks 51
Typical Registers 55

Addressing Schemes 59
Pathways 61

Analyzing the CPU 63

four
MICRO SELECTION 67

Application Volume 69
One-Chip Microcomputers 73
Microprocessor Popularity 78
Popularizing Techniques 78
Popular Slice? 82

Bridge Products 82

The 16-Bit Microprocessors 83
Modular Computer Design 91

Bus Selection 95
Industrial Buses 700
Bus Interconnection 104

Personal Computers 104

five

STORAGE AND INPUT/OUTPUT 106

Storage Media 106
Random-Access Memories 112
Read-Only Memories 115
EPROMSs Are Popular 118
EAROMs Are Convenient 122
The Inelegant Option 125
Magnetic Media 125

Memories in Micros 126
Storage Modules 127
Input/Output Circuits 733
Interface Complexities 136
Designer’s Options 144
Peripheral Problems 146
Input/Output Modules 150
Input/Qutput Addressing 154
Bus Operation 155

Memory and 1/0 Combinations 160

S1X
MICROCOMPUTER PROGRAMMING
The Underlying Machine 1762
Skills Requirements 163
New Skills 164
During Design 165
During Coding 167
During Translation 169
Testing and Debugging 170
Reliability 171
Programming Environments 172

CONTENTS

161

Programming Languages 177
Language Styles 179

For High-Level Languages 180
For Assembly Language 181
The Choice 182

Translator Styles 183
Translator Environments 190
Programming Techniques 194

vii

viii CONTENTS

seven

INTERFACE TECHNIQUES 197

Analog and Digital Signals 198
Digital Inputs 201

Slowing Down Data 205
Output Data 214

Interface Design 216

Interface Standards 217

Serial Paths 217

Choosing Serial 221

RS-232 Interface Design 222
Programming the USART 226
USART Support 226

RS-232 Electrical Interface 228
Using MSI in Interfaces 232
Parallel Transmission 233
Choosing Parallel 236

eight
HARDWARE/SOFTWARE TRADEOFF 239

Trading Software for Hardware 240
Trading Hardware for Software 244
Handling High-Speed Data Transfers 246
Special Peripheral ICs 249

nine
IMPLEMENTATION AND CHECKOUT 253

Chips, Cards, and Boxes 254
Circuit Checkout 255

Prototype Fabrication 255
Wrapped-Board Alternatives 258
Contact Layouts 262

Off-Board Connections 265
Worapping the Board 268

TOOLS

Assembly and Test 272

" Production Assembly 273
Connecting Cards 276
Power Supplies 279
Cooling 280

Enclosures 281
Buying Parts 283
Collecting Information 283

Checking Out the Computer 285

ten
288
Hand Tools 288
Small Test Instruments 290
Logic Aids 293
Computer Terminal 295
Major Electronics Equipment 298

Logic Analyzers 299
Timing Displays 302
Using an Analyzer 304
Some Uses 306

Limitations 307

Signal Generation 308
Microprocessor Analyzers 309
Development Environments 370
General Front Panels 313

Simple Software Support 314
Small Development Systems 3715
Microcomputer Development Systems
In-Circuit Emulation 317

Processor-Independent MDS 317
Peripherals 3178
Applications-Oriented Equipment
Outfitting a Lab 320
Standardization 321
Cross-Support Products 321

CONTENTS

316

CONTENTS

eleven

PROJECT PLANNING 323

Picking the Project 323
Assembling the Team 324
A Typical Project 325

Test Plans 328

Interface Design 330
Computer Assembly 3317
Software 331

Integration 332

Elapsed Time 333
Applied Effort 333

appendix

UNDERSTANDING
THE LANGUAGE OF ELECTRONICS

INDEX

Reading Logic Diagrams 335
Logic Families 338

Integrated Circuit Connections 340
Semiconductor Technology 341
343

335

30

THE
TECHNOLOGY

The prospect of $25 computers captures the imagination of clever
system designers. The potential uses are so pervasive that new applica-
tions are being announced more quickly than most designers ever
thought possible. Following the trends of the decades, from multimillion-
dollar monsters, through $10,000 table-top minis, and down to $1,000
computer-on-a-card micros, technology will continue the downward
spiral in computer cost. The result will be to make the computer an
even more important element in our daily lives. There is an instant of
time—now—when specialized computers may cost under $20 in certain
uses. Just as those one-chip computers rival the power of the digital
computers of the 1940s, the future may reduce the power in today’s
large-scale data processing systems to mere hand-held devices, and the
cost may be a mere $20. Today’s microcomputer is just another point on
a continuing trend, but this point must be understood in order to be able
to exploit technology now and in the future.

The potential for microcomputer applications has already outstripped

2 THE TECHNOLOGY

even the most inventive minds. Systems designers have found more
new uses for micros than any semiconductor vendor ever dreamed
possible. Each of those new ideas stimulates another inventive designer,
and the end of the computer era gets pushed further and further into the
future.

But, what is a micro? How is it used? Is it merely a cheap replace-
ment for a conventional computer? Can designers wait for the technology
and the software support to mature? Indeed, the advent of the micro
poses more questions than it answers. While new applications abound,
the shape of complex questions that would have been irrelevant 10 years
ago is becoming clear. Will arrays of thousands of micros all connected
together form the basis of architecture in the future? It’s possible.

While a micro may be treated simplistically as “just another com-
puter,” it is foolhardy to slavishly retain that notion. The mind boggles
at the concepts that microcomputers permit designers to consider as
potential and practical. The facts are, though, that the micro is being
used successfully by thousands of companies as just another system
component. Those designers are finding that the micro has opened up
wider opportunities for profitable ventures, but at the cost of changing
traditional techniques and at the cost of learning more about the
fundamentals of computers themselves.

Industrial and professional periodicals now carry dozens of articles
on microcomputers and their applications each month. Most of these
assume the reader knows digital circuitry and is proficient in program-
ming. But in fact, most system designers have little direct experience
with the electronics inside the hardware, and this is especially true of
designers who emerge from a systems software background. These
professionals are accustomed to fitting together compatible central
processing units (CPUs), memories, and peripherals in order to solve a
problem. Problems that can’t be solved with off-the-shelf building
blocks are often deemed “unsolvable.” These designers will find that
some change in their behavior will be essential in the coming years.

EVOLUTION OF THE MICRO

The classic diagram of a computer (Figure 1-1) is still relevant, after all
these years. Even the ENIAC, conceived in the 1940s, was based on this
concept, as are nearly all of the most modern computers. The Control
and Arithmetic-Logic Unit (ALU) are often treated as indivisible, and
that combination is called the Central Processing Unit (CPU). The
CPU is central to the computer’s flow of data: from input devices,
through storage media, and to output devices. The intrinsic power of
each of these functional boxes is what distinguishes the various classes
of computers. As technology has progressed, what used to be a large-

PROGRAM
_STORAGE

i

Figure 1-1 Even ENIAC, the first electronic digital computer, relied upon
the classic model of all computers. (Photo courtesy of Smithsonian Institu-
tion, Photo No. 61 699A.)

scale computer has been replaced by the mini, and micros are now
supplanting minis in many applications.

The genesis of this new style of computer—the micro—is well
understood now, in retrospect, although few people could imagine it
before the fact. While the semiconductor technology was making tre-
mendous leaps in the amount of complexity that could be installed in a
single low-cost package, computer architectures were being more and
more simplified to meet the challenges of nonnumeric problems like
control. During the early 1970s, these two trends crossed one another,
and the computer-on-a-chip was born (Figure 1-2).

In the early days of computers, the central processing unit was made
up of bank upon bank of vacuum tubes. The reliability was measured in
hours between failures, and the air-conditioning plant was often larger
than the computer itself. Typical of the technology of that era was a
single accumulator (Figure 1-3), held by two of the original ENIAC

3

COMPLEXITY sl

1947

Figure 1-2 The creation of the transistor led to reliable computers; while
more complex devices became available, computers were declining in
complexity. (Photo courtesy of Siliconix.)

S
| 4B
4
c:
ol
g
c
c
c

Figure 1-3 Two of ENIAC’s spon-
sors hold a single accumulator.
(Photo courtesy of Smithsonian
Institution.)

