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PREFACE

There are several excellent books which deal with the subject of
functional analysis. Few can be regarded as really elementary or
introductory. As a beautiful theory in its own right and for its rich-
ness in applications, functional analysis in some shape or form is now
taught to second and third year mathematics undergraduates at
several British universities. My experience in teaching such students
has indicated that they need quite a gentle introduction—largely due
to two things: that their analytical abilities are not sufficiently
developed and that they are unused to ‘abstract’ reasoning. In my
view, the field of elementary functional analysis is the ideal place in
which to learn some abstract structural mathematics and to develop
analytical technique.

It is my hope that this book may provide a really introductory,
though non-trivial, course on functional analysis for undergraduates
who have completed basic courses on real and complex variable
theory. Although primarily addressed to students of mathematics it
is expected that the approach is basic enough to enable students of
physies and engineering to get something of the flavour of the subject.

Of the several excellent books mentioned above, the master work
of Banach: Théorie des opérations Linéaires (1932) must stand first.
Every serious student of analysis should regard his education incom-
plete until he has read something of this remarkable germinal book.

There is one feature of the present work which we should perhaps
mention. Much of the theory is illustrated by examples involving
sequence spaces rather than integration spaces. This is partly because
most results for sequence spaces will fairly readily generalize to inte-
gration spaces, but mainly because the student to whom this book is
addressed is unlikely to be sufficiently familiar with integrals of the
depth of Lebesgue to enable him to really appreciate examples
involving them. However, it has been thought advisable to prove the
completeness of the important L, spaces, referring to works on
integration for the relevant theorems on interchange of limit and
integral.

Chapter 1 of the book is absolutely fundamental, though extremely
elementary. Some may wish to omit it and proceed to the next
chapter on metric and topological spaces. In my view it would be
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best to make certain of the material in chapter 1 before attempting
the rest of the text. There are over 300 exercises in the book, many of
which are quite routine, though just a few, which appear at the end
of the last chapter, are quite difficult. It is recommended that most
of the exercises should be attempted—to learn mathematics one
must do it.

The final chapter of the book concerns an area of Mathematics
which is of special interest to me. Those students who wish to begin
graduate work in this field may find it a useful introduction. Readers
who are not so inclined may, nevertheless, see functional analysis at
work in a fairly concrete situation.

Debts of gratitude are several. At the undergraduate level my
interest in analysis was stimulated by Professor D. C. Russell. As a
research student I was greatly influenced by my supervisor, Dr B.
Kuttner. A number of my colleagues at the University of Lancaster
have made helpful comments on the book, during many conversations.
I am especially indebted to P. L. Walker for his careful scrutiny of the
typescript and for numerous valuable suggestions. Useful assistance
was also rendered by J. W. Roles and C. G. Lascarides.

The manuscript was expertly typed by Mrs Sylvia Brennan and
Miss June Unsworth, and I gratefully acknowledge their help.

I.J. MADDOX
University of Lancaster, 1969
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BASIC SET THEORY AND ANALYSIS

1. Sets and functions

The great German mathematician G.Cantor (1845-1918) is usually
regarded as the creator of the theory of sets. As our starting point for
this book we shall take Cantor’s definition of a set: ‘A set is any collec-
tion of definite, distinguishable objects of our thought, to be conceived
as a whole.” The objects mentioned in the definition are called the
elements or members of the set. Usually we denote sets by capital
letters and elements by lower case letters. If X is a set then we write
zeX to mean that 2 is an element of X. When an object « is not an
element of a set X, we write ¢ X.
In what follows we shall take for granted the following sets, which

occur throughout mathematics:

N ={1,2,3,...}, the set of all positive integers,

Z ={0,1, —1,...}, the set of all integers,

@, the set of all rational numbers,

R, the set of all real numbers,

C, the set of all complex numbers.

The notation arises as follows: N for natural numbers, Z for Zahlen
(German for integers), @ for quotient. The notation R and C seems to
require no explanation.

Usually, in a given discussion, we take a fixed set and everything is
carried out with reference to it alone. In such a case the fixed set is
called the universe of discourse. For example, in number theory the
universe of discourse is Z. Within a universe of discourse X a common
way of generating a set is to take an object in X of a certain type and
then to consider the set of all such objects. For example, having defined
an object in Z called a prime number we may then consider the set of
all prime numbers.

In a work of the present nature we are primarily concerned with the
manipulation of sets, rather than with their deeper properties. To this
end we now introduce notation and definitions, and observe some
simple results.

[1]
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First, there is no way, in general, of explicitly writing down all the
elements of a set. For example, it is in the nature of the positive
integers IV that they cannot all be explicitly exhibited. We have to be
content to write N = {1, 2, 3, ...}; the three dots leaving much to the
imagination. Generally, we use the curly bracket notation for sets
either writing down the first few elements and then some dots which
we agree is to tell us that the law of formation of the elements is well-
known or obvious, or we put in the law of formation. For example,
{x|xe N and x > 8} is read as ‘the set of all x such that z is a positive
integer and x is greater than 8. The vertical bar following  is read as
‘such that’. Thus we could write this last set as {9, 10, 11, ...}. Again,
{z|zeR and « > 0} denotes the set of all strictly positive real numbers.
In this case it is not possible to write down the elements explicitly, or
even in such a way as to indicate the law of formation, such is the
nature of the real numbers. In fact it will be seen later that the set
{z|re R and x > 0} is uncountable, so that the elements cannot even be
exhibited as an infinite sequence ,, &, 75, .... We remark that the order
of the elements in a set is generally irrelevant. For example, IV is the
same set as {2,1,4,3,6,5,...}.

If 4, B are sets then the notation 4 = B means that every element
of 4isalso anelement of B.If A < Bthen wesay that 4 isasubset of B,
B is a superset of 4, 4 is included in B and also B includes 4. The
notation B > A4 is regarded as equivalent to A = B. We define 4 = B
ifand only if 4 = Band B < 4. Also, we say A4 is a proper subset of B
ifand only if 4 = Bbut 4 + B. For example, the set of odd integers is
a proper subset of Z. We remark that some writers use the notation
A < B, which allows equality, and reserve 4 < B for proper subsets.
On occasion we shall also say that ‘4 < B, strictly’, meaning that 4 is
a proper subset of .B.

Two simple properties of the set inclusion < are:

(i) A< 4,
(i) A =< Band B< Cimply 4 = C.

If 4 is a given set let us consider that subset of 4 defined as
{reA|x # «}. This set has no elements and is known as the empty set.
It is denoted by @ and has the property that @ < A for every set 4.
Each set 4 + @ has at least two distinct subsets, A and @.If A has
only these two subsets then 4 must be a one element set, 4 = {a}, say,
where a is the sole elementqof A. Note that & has no elements but that
the one element set { &} is not empty.
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Unions and intersections of sets
Given sets A, B we may form two new sets from them:

A U B = {z|z belongs to at least one of A and B},
A nB = {z|xcA and xeB}.

We call A U B the union and A n B the intersection, of A and B. For
example, {1,2,3}U{1,4,3} ={1,2,3,4}; {2,3}n{1,3,2} = {2,3}. It is
trivial that AnB <A < AU B for any sets 4 and B. If AnB = &,
then we say that A and B are disjoint.

We shall often want to form the union or intersection of a whole
class (or collection) of sets. Let & be a class of sets 4. Then we define

U{d|4eS} = {x|xcA for at least one 45},
n{d|AeS} = {w|xeA for all AeF}.

Sometimes we write U4,, n4,, where we think of a as running
through some indexing set. If o runs through N we usually write

U{An]nEN} =U An’
n=1

and similarly for N 4,. The ‘o0’ in this notation is conventional, but
n=1

superfluous, not to say confusing. It is emphasized that 4, is not in
the collection {4,|neN}. Observe also that no limiting process is
involved in the above. Thus, for example, to say that ze U 4, is to

n=1
say that there is a positive integer p such that ze4,,.

Example 1. Let A, be the interval [0,1+1/n) on the real line, i.e.
A,={xeR|0<x<1+1/n},n=1,2,.... Then

ro% 4,=1[0,1]={zeR|0<z < 1}
n=1

To show this we first prove [0,1] = n 4, and then prove n4,, < [0, 1].
Nowze[0,1]implies0 < 2 < 1 < 1+ 1/n,forallneN,ie.ze 4, forall
nel,i.e. xend,. Conversely, zend, implies 0 < 2 < 1+ 1/n, for all
neN, whence 0 < « < 1 (either letting n— co, or supposing > 1 and
obtaining a contradiction to z < 1+ 1/n for all neN).
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Cover for a set
Let & be a class of sets A. Then the class & is called a cover for
a set X if and only if
Xcuf{d|des}.

- Any subclass of & which also covers X is called a subcover of & .

The notion of ‘open’ cover will be employed in chapter 2, in con-
nection with compact sets. The ‘open’ here refers to the fact that the
sets of the cover are open sets, in the sense of topology. For the
moment we shall be content with a very simple example on covers.

Example 2. (i) Let I, be the open interval
(n,m+1) = {xeR|n <z <n+1}

on the real line. Then the class {I,|n€Z} is not a cover for R, for no
integer belongs to U {I,|neZ}.

(ii) IfJ, = {xeR|n < < n+ 1} = [n,n + 1), then the class {J,|neZ}
is a cover for R.

(iii) Let S[a,r] = {2€C||z—a| < r}, where acC and r > 0. Thus
S[a,r] is the closed disc of centre @ and radius r in the complex plane.
It is clear that the class {S[m + in, 1] |m,neZ} is a cover for C.

Complementation
If X is our universe of discourse and A, B < X then we define
A ~ B = {zeX|red,x¢B).

We call 4 ~ B the complement of B with respect to A. By ~ A we
mean X ~ 4, and we call ~ 4 the complement of 4. It is clear that
A~B=An(~B), ~(~A4)= A, and that 4 < B is equivalent to
~Bc ~A.

The two following results concerning complementation are known
as De Morgan’s laws:

~Ud,=n(~4,); ~nd,=U(~4,).
To prove the first of these, for example, we merely note that ze ~ 4,
for all « is equivalent to ¢ 4, for any a.

Some other properties of union and intersection which are easy to

show are
(i) nd,<=4,<uAd, for any «,
(i) Au(nd,)=ndud,),
(iii) 4n(ud,) =udn4d,).
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Ordered pair
Let x, y be any objects. Then the ordered pair (x,vy) is defined as
the set {{z}, {x, y}}. It is easy to check the fundamental property of
ordered pairs: (x,y) = (u,v) if and only if x = u and y = v.
More generally we may define in a similar way an ordered
n-tuple (xy, ...,x,) with the property (i, ...,%,;) = (Y15 -+ Yn)
if and only if ¥, = Yy, ..y Xy = Yy,

Relation
A relation p is defined to be a set of ordered pairs. For example,
p={(1,2), (a,b)} is a relation.

Equivalent notation for (x,y)ep is apy. Thus in our example we
might write 1p2 instead of (1, 2)ep.

An important type of relation is the

Cartesian product
Let X, Y be given sets. Then

XxY ={(x,y)|zeX and yeY}

is called the Cartesian product of X and Y.

Another important relation is the

Equivalence relation
Let X be a given set. A relation p is called an equivalence
relation on X if and only if it is (i) Reflexive, i.e. xpx for all
xeX, (ii) Symmelric, i.e. xpy implies ypz, (iii) Transitive, 1.e.
xpy and ypz imply xpz. It is usual to denote an equivalence
relation by ~ rather than p. There is little danger of confusion
with complementation.

Example 3. (i) Equality is obviously an equivalence relation on

any set.
(ii) Let X = {(x,y)|x,yeN}. Define (2,y)~ (u,v) to mean
v = yu. Then ~ is an equivalence relation on X. For example, let us
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check transitivity: (x,y)~ (u,v) and (u,v) ~ (2,w) imply av = yu,
uw = vz, whence xvuw = yuvz, and so 2w = yz, i.e. (z,y) ~ (2, w).

(iii) Define # ~ y to mean x—y is divisible by 2. It is easy to
check that ~ is an equivalence relation on Z.

Let us return to general relations. The domain of a relation is the
set of all first co-ordinates of its members. The range is the set of all
second co-ordinates. If ~ is an equivalence relation on X, then we
define E, = {ye X|y ~ «} and call E, the equivalence class containing
the element z. For example, in example 3 (iii) we have

E,={0, +2, +4,..}.

In general, it is easy to check that E, = E, if and only if  ~ y, and
that E,nE, = ¢ if E, + E,. It is thus evident that {E,|xc X} forms
a partition of X, i.e. X is the union of the disjoint classes E,. For
example, in example 3 (iii) we have

Z={0,+2 +4,..Ju{+1, £3, £5,...}.

Probably the most significant type of relation that occurs in
mathematics is that which is called a function. The following defini-
tion of a function may seem rather strange to those who are used to
books of analysis which extensively employ functions but never
actually define them.

Function

A function f is defined to be a relation, such that if (z,y)ef and
(z,2)ef then y = z. Four other terms for function are map,
mapping, operator, and transformation.

Our concept of a function as a certain set of ordered pairs is what
some would call the graph of a function, since they define a function
as a ‘rule’ or some such. On occasion we shall use the term ‘graph of
a function’, when this seems more expressive. However, to us, a
function and its graph are exactly the same thing.

Example 4. (i) {(1,2),(2,2)} and {(z,z2+ 1) |2eC} are functions.

@ii) {(1,2), (1, 4)}and {(«? ) |xc R} are not functions. For example
(1,1) and (1, — 1) are in the second set.

(iii) {(2?% «)|zeR+}is a function. Here R+ = {xeR|xz > 0}. In this
case, if the first co-ordinates are equal, 2% = y?, then (v —y) (x +y) = 0,
80 z = y, i.e. the second co-ordinates are equal.
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If f is a function and (z,y)ef then we write y = f(x), which is the
conventional notation for y as a function of . We say that y is the
value of f at , or that y is the image of # under f.
The notation fiZ>F

is now widely used in mathematics. It is interpreted as ‘fis a function
from the set X into the set Y ’. The meaning of f: X - Y is that X is
the domain of f and that the range of fis a subset of Y, not necessarily
the whole of Y.

If :X—>Y and 4 < X, then the function g: 4— Y, defined by
g(a) = f(a), for ac 4, is called the restriction of f to A.

Example S. (i) Define f by f(z) = e?, for z€R, i.e. the domain of f
is R and f = {(x, ¢%) |xeR}. The range of f is in fact R*, as is well-
known. We may write, with increasing accuracy, f: R—>R, and
f:R—R*,

(ii) Definefby f(z) = |z|, forzeC. Then, with increasing precision,
we have f:C—C, f:C—R, and f:C—{xeR|x > 0}.

Bijective maps :
Let f: X — Y. Then f is called injective if f(x,) = f(x,) implies
Xy = &, for every x,,x,€ X. If the range of f is the whole of Y,
then f is called surjective. A mapping which is both injective
and surjective is called bijective.

The terms ‘one-one’, ‘onto’ and ‘one-one correspondence’ are some-
times used instead of ‘injective’, ‘surjective’ and ‘bijective mapping’
respectively.

Example 6. f: R—>{zcR|x > 0}, defined by f(z) = 22 is surjective
but not injective. The same prescription for f, but with f: R+— R+,
is bijective.

Inverse function
Let f: X — Y bebijective. Since fis surjective, if ye Y then there
exists xe X such that y = f(x). This x is unique, since f is injec-
tive. Hence there is an tnverse function g:Y —X such that
9(f(x)) = 2, for all xzeX, and f(9(y)) =y for all yeY. It is
usual to write g = f1,



