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FOREWORD

This volume represents the talks delivered at the Symposium on
Harmonic Analysis, held at the University of Crete, in Iraklion, Greece,

the first week of July 1978.

The conference was organized by the newly founded University of

Crete on the occasion of its first anniversary.

The manuscripts of the lectures are published here, as supplied
to us by the speakers, except for retyping to make them uniform in

appearance.

The common feature of these lectures is that either they strictly
belong to Harmonic Analysis (classical and abstract) or they use me-

thods belonging to it.

We believe that we express the feelings of all participants if
we extend our thanks not only to our host, the University of Crete, but
also to a number of local communities (Iraklion, Aghios Nikolaos,
Acharnes, Anogia, etc.) which transformed their love for and their

faith in the new University to an unforgettable hospitality for its

guests.

We also wish to thank

* The Ministry of Science and Culture,
. The Mayor and the Town Council of Iraklion,
. The National Tourist Organization of Greece,

for financial support.

The Editorial Committee

N. Petridis, S. Pichorides, N. Varopoulos
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CRITERIA FOR ABSOLUTE CONVERGENCE OF FOURIER SERIES

Nicolas K. Artémiades

To give, even a partly expository, talk to an audience containing
such a number of experts does not seem to be an easy task. I am afraid
certain people will hear the speaker explaining their theorems to them.

But that will just have to be.

e INTRODUCTION

One of the primary objectives in the theory of Fourier series is
the study of the class 4 of all Lebesgue integrable complex-valued fun-
ctions on the circle T (the additive group of the reals modulo 2nt) whose
Fourier series are absolutely convergent. Let A be the set of all conti-
nuous functions which belong to A. It is well known that A is a Ba-
nach space under pointwise linear operations and the norm

th

||f|!A = ) |f(n) < +®, where f(n) is the n Fourier coefficient of the

nez
function *fie A. Also, A is an algebra under pointwise multiplication

and ||fg|]A = lLﬂlAllgHA. This means that A is a commutative Banach
algebra with the constant function 1 as its identity element.

The Banach Algebra structure of A (due to N. Wiener) suggests a
great number of problems which constitute the so called "modern approach"
to the study of A. For example, one of these problems on which attention
has been concentrated is to find "under what conditions upon the function
F, defined on some subset D of the complex plane, is it true that Fo fe A
whenever feA and £(R) D ?" Another problem is to"determine the closed
ideals of A". A particular case of this last problem is the so called

"Problem of Spectral Synthesis" which can be formulated as follows: "Is
every closed ideal of A of the form IE’ where IE is the closed ideal of
A formed by all functions in A which vanish on the closed set E ?2" A

negative answer to this question was given in 1959 by P. Malliavin.



But I will not continue further towards the direction suggested by
the Banach Algebra structure of A.

The classical approach to the study of A has in the main concen-
trated attention on seeking conditions on an individual function f, which
are sufficient and/or necessary to ensure that fe A. Wiener proved that
the property of a continuous function on T to belong to A is a local one.
This simply means that if f is continuous on T and if for each aeT
there exists a function g,ea which is equal to f in some neighborhood
of a, then feA. 1In the classical approach, emphasis is given to com-
paring this local property to other properties, as for example is the
modulus of continuity. Into this direction of research fall developments
concerning the restrictions of the class A, noted A(E), to closed sub-
sets E of the circle. There are closed subsets of the circle (called
Helson sets) such that every continuous function on E belongs to A(E).
In general, it is true that more E is "fat" more severe is the condi-
tion to be imposed on the modulus of continuity of a function f in or-
der that - £ e A(E) .

In many instances, the study of a problem in A is facilitated if
it is transferred to an A(E) for a certain E.

To finish with this very brief expository part of the article I
would like to mention two well known criteria for a function £ to be

in 4

Criterion of M. Riesz.:  ft A iff it can be expressed in the form

f = u*v with u,ve L2(T).
Unfortunately, this criterion is very difficult to apply in any

specific case that is not already decidable on more evident grounds.

Steckin's Criterion. For every f ¢ L2(T) and every integer n>0 set

e (f) = inf||£f-P||
B L2 (1)



where the infimum is taken over all trigonometric polynomials with at
n b 7 o

most n coefficients different from zero (P(t) = ) Ty il A

m=1

have Y |f(n)|<+= iff ) + e (f) <+ =.
nez n=1v/n
The main drawback with this criterion is the extreme difficulty

encountered in estimating the numbers en(f) for a given function.

2% Some other criteria

It is well known (Kahane [2], p- 9) that "every continuous function
on T with non negative Fourier coefficients belongs to A".

This result can easily be generalized as follows:

Theorem 1. Let £:T > @ be continuous with the property that there is a
aelR such that ac<arg f(n)ia+%(nez). Then £ eA.
Also every f e A is a linear combination of continuous functions on

T with the above property.

Proof. The second part of the theorem is obvious. To prove the first

part let us assume,without loss of generality, that a=0. For if a#0

we may consider g(x) = f(x)~e_ia instead of £, since 0 <arg &(n):ig.
Next, set
v E )i (—ar) EGK) = F (5x)
Bix) . = T e P 6 D ATy ey T
Clearly, both F and G are continuous and ﬁ(n) = Re%(n)_zo,
G(n) = Jmf(n) >0, so that by the previous result F and G belong to

A which means feA since A is a linear space.

Theorems 2 and 3 below provide criteria for f to be in 4 .

Theorem 2. Let f¢ L1(T). Then fe 4 iff the following condition is
satisfied.

"There is a Lebesgue point, a, for f such that the sequences



o ligs L SRR e A

belong to &'.

Proof. Suppose (*) is satisfied. We first consider the case a=0.

For N a positive integer set oy (t) = Y 1= %)E(n)eint.
n==N
By a theorem of Lebesgue we have that 1lim oN(t) s £y, 1808 A6
N+
a Lebesgue point for f. Hence
N -!-L - -
(1) Mo (0= 1am -} (1 1{1‘ )£(n) = £(0) = finite.
N->oo n=-N
Also
(2) R SRS
N 2 N T
n=-=N
¥ Tl s n $ok itk
o 0 S ar b3t 3 0 VS O SR (O € O =) O mE(n))
n=-N n=-
N >
=i N (= lﬁl)(Ref(n))- -1y (1- lEl)(J’mf(n)) g
n==N n=-N

If we let N+« then the UN(O) are uniformly bounded because of (1),
while the last two sums of the right-hand side of (2) are bounded (more

precisely they converge because of the hypothesis (*)). Therefore

N i = A
1 A R ) (Ref (M)) <4
n=-N

Lin § (1= B (smemn?t <+o
N n=-N

Since the Cesdro summability of a series with non-negative terms implies
the convergence of the series, it follows that § |f(n)| <+, i.e.

nez
Elerairs

Next assume a#0. Then 0 is a Lebesgue point for fa so that,

by the last result, we have y ]Ea(n)| < tbe, But %a(n) =eian£(n) SO
nez



that fe A.

Now, if fe 4 and a is any Lebesgue point for £ we have

J 1€ | = J |e*®™ £(m)| = J |£,(n)| < +» and condition (*) 1is
nez nez nez

clearly satisfied.

@orollary 1. = Letlf e L1(T). Then f is equal a.e to a linear combi-

nation of positive definite functions iff condition (*) is satisfied.

Proof. It follows from Theorem 2 and Herglotz's characterization of
continuous functions with non-negative coefficients as positive defi-

nite.

Theorem 3. Let fe¢ L1(T). Then fe A iff the following condition is
satisfieds:

"f is ess. bounded in a neighborhood of some real number a, and both
sequences

belong to £1.“

(%%) <(Re f,(n)) > (Jm fa(n))‘>n

neZ’ A

Proof. Suppose (**) is satisfied and let a=0. Using the notation of

Theorem 2 we have:

1

og(t) = 5 JTf(y)KN(t—y)dy
| nl, in in®(n|2)y
where Ko(y) = '} (1- ighe® Y - 824 ; !
n=-N N sin” (y|2)

Next assume |f(y)| <M a.e for ye (-h,h) (h>0).
We have
h h 1

1 1
oy (0) = 5= J f(Y)K (y)dy + 5= j b ko

LN
=h =

Observe that the first of the last three integrals is bounded by M, and



the other two converge to zero as N>« by the Lebesgue dominated con-
vergence theorem. Therefore the oN(O) are uniformly bounded.
From this point on the proof proceeds exactly the same way as in

Theorem 2., that is by letting N+o in (2).

Corellary 2. Let fg L1(T). Then £ is equal a.e. to a linear combina-
tion of positive definite functions iff (**) is satisfied.
Using a technique similar to the one used above one proves the

following analogues of theorems 2 and 3.

Theorem 2. Let £f'e L1GR). Then f ¢ L1GR) (where f is the Fourier trans-
form of f) iff there is a Lebesgue point a for f such that (Refa)_

(Jm Refa)— belong to L1GR).

Theorem 3. Let feL'(R). Then feL'(R) iff f is essentially bounded
in a neighborhood of some real number a and (Re%a)_, (cfmga)_ belong
to L) @R) .

One might find theorems 2 and 3 interesting also because of the

following remark.

Remark

Call a numerical series zan-+ibn, (an,bnenU "one sidedly absolu-
tely convergent" (O0.A.C.), iff: (at least one of Ea;, Ea;) and (at
least one of Eb;, Eb;) isy finite

Now, it is possible that a series E(an-+ibn) is not OAC while the
series z(an-kibn)eix is OAC. In other words a non OAC series can, in
some cases, be converted to an OAC series by just multiplying each term
i)

by a factor of the form e (A = some constant) or perhaps in some other

way .

Example: Let Ch= an-+1bn where Cyoy = 1+1, Cone1 = =400 nl@f0n 45 2, Lt
and )= % . Then it is easily seen that Ecn is not OAC while

5,
Ic_e 85
n



Theorems 2 and 3 essentially say that the Fourier series of f

converges absolutely iff Efa(n) is OAC.
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FRACTIONAL CARTESIAN PRODUCTS IN HARMONIC ANALYSIS
by
Ron C. Blei(*)

The Hebrew University and The University of Connecticut

Our purpose here is to explain the fractional cartesian pro-
ducts of [1] which naturally filled gaps between ordinary cartesian
products of sets in a framework of harmonic analysis. The idea of
fractional powers of sets appears fairly general and we would first
like to describe briefly--taking a somewhat metamathematical point
of view--the philosophy behind these products. Let E be a given
set. Let L be a positive integer, Y be a fixed indexing space and
i
i=
the following subset of the usual L-fold product of E:

£E

Iy be a collection of functions from Y onto E. Consider now

* L L
E = {(f. (y)) :yeY} € E
(£;) el
If the fi's are 'independent' (for any xl,...,xLeE, the system of
equations fi(y) = xi,i==l,..qL, has a solution in Y) then E(f_)==EL
al

On the other extreme, if the fi's are mutually 'dependent'
(£; (yy) = £, (y,) 2 fj {¥y) = fj (y,) for any fi'fj and y,,y,¢eY)

then E(f_) can be canonically identified with E. 1If, however, the
1
type of interdependencies between the fi's falls somewhere between

independence and mutual dependence, E is then a set that falls

(£1)
somewhere between E and EL.
To see how to formulate an intermediate type of interdependen-

cies we observe that independence and dependence can be measured in

*
( )Author was supported partially by NSF Grant MCS 76-07135.



the following way. First, by replacing Y with an appropriate quo-
tient of Y, we can assume without loss of generality that

Y > (fi(y))L is an injection. Let s be a positive integer, and
i=1

Ay,...,A &FE be arbitrary where ]Al| = ees = |AL| = s (|+| denotes

L
cardinality). Write:

.

¢(Ai)(s) = | fyey £i(y)er; and ... and f (y)eA;}

Note that if the fi's are independent then

T
[0} (s) = s ;
(a;)

on the other hand, if the fi's are mutually dependent then
< 5
¢(Ai)(s) <s

An intermediate interdependency for {fi}L that corresponds to
i=1

1l < r < L can be described by the relation (asymptotic in s).

(1) w(E(fi);s)=sup{¢(Ai)(s) B VR TrTy Wi W R Rt

This is the basic idea underlying the fractional products of [1]
where prescribed interdependencies between concrete fi's simulated
the desired fractional power of a set.

We now move to a harmonic analytic context, where we start with

E = {Yi}f l, an infinite independent set in some discrete abelian
l=

group T; that is, for any L, L' > 0 the relation



10

where the Aj's and vj's are arbitrary integers, implies that L = L'
and Xy = vy for all j. For example, E could be the canonical basis
in @ Z (the infinite direct sum of Z) whose compact dual group is
Qb'r (the infinite direct product of T). We proceed to construct a
fractional cartesian product of E. Let J > K > 0 be given integers,

and let

g =v il S0 STk,

J

K). Let

For the sake of typographical convenience, we write N = (

{sl,...,sN}

be the collection of all K-subsets of J (sets containing K elements

of J), where each %ch is enumerated as

Sa = (al,...,aK).

Let Pl""’PN be the projections from (Z+)J onto (Z+)K defined
as follows: For 1 < o < N and j = (jl,...,jJ) E(Z+)J,
PC!(]) = (Jall---IJaK) .

Next, let f be any one-one function from (Z+)J onto E, and

fa = foPa s (2 T RS
write
gy = Bgx = LE1G) o3 = 3 ezhlredNery,
The outstanding feature of E is that

J,K

V(E5 pis) ~ g/ K



1"

(see (1) for the definition of ¥), which is, in fact, an analogue
of a basic harmonic analytic (or probabilistic) property of EJ,K
that will now be discussed. First, we recall that a spectral set

FE€T is a A(p) set, 2 < p < », if there is a constant A > 0 so that

for 'all functions h e LZ(G) whose spectrum is in F (G = I'"), we have
(2) Allhll, 2 [Indl, .

The 'smallest' A for which (2) holds is the A(p) constant of F and

is denoted by A(p,F).

Definition. Let Be [1,») FeT is a AP set if A(p,F) is
0(pB/2). F is said to be exactlx—AB when F is A% if and only if

ae [B,»), and exactly non-AB when F is A2 if and only if ae (B,»).

J-fold cartesian products of independent sets are the proto-
typical examples that are exactly AJ (see [2]). The gaps that were
kept open between J and J+ 1 are neatly filled, as we are about to

see, by the fractional products that have just been defined.

Theorem. Let EC€T be an independent set. Then, EJ KCI‘N is
’
exactly AJ/K, and, moreover, there is N7 K F.0-so! that' for'all g=>'2
’
J/2K J/2K
*
() ny,x 9 S Alg,/Exp g) £ 9

To avoid a fog of indices, we sketch the proof of the theorem
in the case J=3 and K=2 -- the general case follows a similar line.

The right hand inequality in (*) is based on a simple combina-
tional criterion that is a link between the algebraic structure of a
spectral set and its harmonic analytic features. Let F be a subset
of T, s be a positive integer aﬁd yel. Let rS(F,Y) denote the

number of ways to write y in the form of



(3) e

where Yyre-er Ygq are (not necessarily distinct) elements in F, and

s
where different permutations on the right hand side of (3) are
counted as cifferent representations. An application of Plancherel

formula and the Schwartz inequality yields

1/2s

(4) A(2s,F) < sup {[rS(F,Y)] s NTERT]
(see Théoréme 3 in [2]).
We now present E3 2 c T3 as
’
E3’2 & {[Yi]' ijl Ylk) : lljlk = ll -0-}
where {Yij}? : is some fixed enumeration of our independent set E,
ll]=l
and proceed to estimate r_(E §) for any given (61,6 = 68¢€ F3.

853,27 2’63)

Suppose that

S S S

5 [} il : T oy
£ : n=lYJnkn ‘. mmainky

83) = ( L

11621 nleinjn v
The independence of E implies that the only way that § can be ob-
tained as a product of s elements from E3 5 is for these elements

’
to have in their first, second and third coordinates the members of

E that appear in the first, second and third coordinates of (5),

respectively. Let
Al = {(iljl)""'(isjs)}’

R ke e U

b
|

3 e {(ilkl)r---l(isks)} v



