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PREFACE

My main motivation for writing this book has been my conviction that the concept
of partial computation is greatly underappreciated and ought to occupy a much
higher level of awareness among computer scientists and computing professionals
in general. Although partial computation is intimately connected with such basic
concepts as binding time, efficiency, time/space trade-offs, and compilation versus
interpretation, relatively few people have studied it. Most writings on the subject
have been theory-oriented research papers.

To combat this, I have chosen to emphasize a practical, down-to-earth pro-
gramming methodology that is based on the concept of partial computation but
does not depend upon the availability of a “partial evaluator” software tool. This
methodology is readily available to all programmers. As a systematic approach to
the construction of program generators, it can be used to realize many of the bene-
fits of full-blown partial computation.

The methodology is a general one and is applicable to many areas of pro-
gramming. The construction of processors for programming languages is an area
that is especially rich in opportunities to apply the methodology. For that reason,
much of the book has to do with various aspects of language processing. It should
be understood, however, that the primary subject matter is the partial-computation-
based programming methodology; language processors are being used only as a
context for case studies. If this book were viewed as a text on language processing,
it would have to be regarded as quite incomplete and unconventional in its ap-
proach.

I do believe, nonetheless, that some of the concepts presented here should be
taught to all students of language processor techniques: In that respect the book
could serve as a supplement to the main text in a college-level course on compiler
design. Of particular interest in this context is the interpreter-to-compiler conver-
sion technique developed in Chapters 8 through 10. In a term project, students can
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use this technique to construct a compiler without being familiar with machine
language.

Pascal (specifically, Borland International’s Turbo Pascal 4.0) is used as the
implementation language throughout the book, not because the methodology is in
any way limited to that language, but simply because Pascal seems to be the closest
thing to a lingua franca of programming languages at the present time. The book
assumes that the reader, in addition to an understanding of Pascal, has a good
knowledge of data structures, such as stacks and trees, and recursive programming.
A prior knowledge of language processor techniques is not required.

Many of the chapters end with one or more suggestions for projects, which
are often analogous to the case studies in the chapters themselves. Some of these
projects would take days or weeks to complete and could be assigned by instructors
as major lab problems.

It is a pleasure to acknowledge the contribution of John Jure to this work. As
part of his Master’s project, he labored long and hard to generate the LR(1) parse
table for Cal used in Chapter 6.

Frank G. Pagan
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PROGRAMMING LANGUAGES
AND THEIR SPECIFICATION

This book is about a practical programming methodology based on a largely theo-
retical concept known as partial computation. To undertake a study of an advanced
programming methodology, one must already be proficient at programming in one
or more programming languages; throughout the book, a version of Pascal will be
used. As a convenient framework for case studies of application of the methodol-
ogy, some aspects of the construction of processors for programming languages
will be considered. Accordingly, we begin by reviewing some relevant technical
properties of programming languages and their description.

1.1 ASPECTS OF PROGRAMS AND LANGUAGES

In this book, the most general sense of the term “language” will cover all formal
notations for the expression of computer programs. One of the most basic ways of
categorizing these notations is by level:

machine languages

assembly languages

high-level languages

fourth-generation (very high-level) languages

Much of the book, and the rest of this chapter, is concerned with the high-level
languages, of which Pascal is one.

In a complete description of a programming language, there are at least four
aspects that must be addressed:
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lexical properties
syntax

static semantics
dynamic semantics

The lexical aspect has to do with the grouping of a program’s individual
characters into basic symbols known as tokens. The Pascal statement

while tab [i ] <= val do
i = i+15

consists of a sequence of 13 tokens:

1. while 2. identifier tab 3. ¢
4. identifier i 5.1 6. <=
7. identifier val 8. do 9. identifier i
10. := 11. identifier i 12. +

13. numeral 15

Each token consists of one or more consecutive characters on the same line. Con-
secutive tokens may be separated by any number of blanks, line breaks, and com-
ments. For most pairs of tokens, these separators are optional, but in a few places,
such as between while and tab and between val and do, at least one separator
must be present.

Since the number of different possibilities for identifier tokens is virtually
unlimited, it is standard practice to lump together all identifiers as a single kind of
token. A few other token families, such as numerals and literal strings, are treated
in a similar manner. We will refer to these token types as variable-length tokens.
The great majority of a language’s tokens, including reserved words such as while
and do, are fixed-length tokens.

When we ask about the legality of a given sequence of tokens, we move into
the realm of syntax. The syntax of a programming language is often specified with
the aid of a context-free or BNF grammar. There are many notational variations for
BNF grammars, and there is no reason to try to review all of them here. We will
simply employ a notation that is reasonably common and that is convenient for our
purposes.

Three main kinds of symbol are used in a BNF grammar: terminal symbols,
nonterminal symbols, and metasymbols. The terminal symbols correspond to the
tokens of the programming language. Fixed-length tokens are represented by them-
selves, enclosed in double quotes. Variable-length tokens are represented by special
words enclosed in angle brackets:

<idr> identifier
<int> integer numeral
<real> real numeral

<str> literal string



Sec. 1.1 ASPECTS OF PROGRAMS AND LANGUAGES 3

Nonterminal symbols are names of syntactic categories, such as statement
and term. Each nonterminal must be defined by a production rule consisting, in
the simplest case, of a left part and a right part separated by the metasymbol =.
The left part consists of the nonterminal being defined, and the right part consists
of a sequence of terminals and/or nonterminals, as in the following example:

whilest = "while" expr "do" stmt

Production rules with the same left part can be combined by using the metasymbol
| to separate the right parts:

ifst = "if" expr "then" stmt |
"if" expr "then" stmt "else" stmt

The metasymbols = and | can be read as “consists of”” and “or,” respectively.

For a given left part, one of the right parts can consist of 0 symbols. We will
use the dummy symbol <empty> to indicate this phenomenon. The following rules
would be an alternative way of defining the syntax of i £ statements:

ifst = "if" expr "then" stmt elsopt
elsopt = "else" stmt | <empty>

A complete grammar consists of the production rules for all the nonterminals
involved in it. The nonterminal for the most inclusive syntactic category, such as
program, is said to be the grammar’s start symbol. The production rules will, in all
likelihood, constitute a mutually recursive set of definitions; this is evident as soon
as we add a rule of the form

stmt = whilest | ifst |

to those given previously.
Sometimes a rule with two or more right parts is directly recursive. For
example,

stmtlist = stmt | stmtlist ";" stmt

has the effect of specifying that a statement list consists of one or more statements,
separated by semicolons if there is more than one. It is said to be a left recursive
rule, since the nonterminal being defined appears as the leftmost symbol in one of
the right parts. The equivalent rule

stmtlist = stmt | stmt ";" stmtlist

is a right recursive rule.

Given a string of grammar symbols (i.e., terminal and nonterminal symbols),
the process of replacing a nonterminal with one of its right parts is called a deriva-
tion step. A sequence of derivation steps, such as the following, is called a deriva-
tion.

stmt
=> whilest
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=> "while" expr "do" stmt
=> "while" expr "do" ifst
=> "while" expr "do" "if" expr "then” stmt

The last string in a derivation is said to be derivable from the first string. If a
final string consists entirely of terminals, it is said to be a terminal string. In the
absence of an indication to the contrary, the initial string of a derivation will be
assumed to consist only of the start symbol. A terminal string derivable from the
start symbol program would be a particular token sequence constituting a pro-
gram. If no derivation exists for a given token sequence, that token sequence is
syntactically invalid. Given a grammar and a token sequence, the process of at-
tempting to reconstruct a derivation of the latter in accordance with the former is
known as parsing or syntactic analysis.

A derivation is a leftmost derivation (respectively, rightmost derivation) if at
each step the nonterminal farthest to the left (respectively, right) is the one that is
replaced. It can be proved that, if a token sequence is syntactically valid, it has both
a leftmost derivation and a rightmost derivation. It can also be proved that any
token sequence with more than one leftmost (respectively, rightmost) derivation
also has more than one rightmost (respectively, leftmost) derivation. (There would
then also be more than one “parse tree,” but we will not be using parse trees in this
book.) In that case, both the token sequence and the grammar are said to be ambig-
uous.

The grammar notations mentioned up to this point amount to what is some-
times called the “pure” version of BNE. Many parsing methods rely on the exis-
tence of pure BNF grammars that are unambiguous and that obey various other
restrictions. “Extended” versions of BNF, on the other hand, make use of addi-
tional metasymbols to improve the clarity and conciseness of grammars.

The most common of these additional metasymbols are brackets and braces,
used pairwise within individual right parts. Brackets indicate that the enclosed
string of grammar symbols is optional. Thus we have a third way of defining the
syntax of if statements:

ifst = "if" expr "then" stmt ["else" stmt]

Braces mean that the enclosed string is to be repeated zero or more times. They
provide an alternative to recursion in many instances, such as the specification of
statement lists:

stmtlist = stmt {";" stmt}

BNF grammars cannot express all aspects of the legality of token sequences.
The sequence

while tab[i] <= val ...

for example, is erroneous if tab is not an array or is a multi-dimensional array, or
if i is not of the array’s index type, or if val was not declared, and so on. Al-
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though these properties of programs can be placed under the heading of context-
sensitive syntax, implementors of language processors commonly use the term
static semantics when speaking of them. The portions of a language description
concerned with static semantics take the form of restrictions on the token se-
quences allowed by the grammar. The checking for violations of these restrictions
can be carried out in conjunction with the syntactic analysis.

Given that a program is legal with respect to syntax and static semantics, its
meaning is determined by the programming language’s dynamic semantics. Pro-
gramming-language theorists have devised various ways of formulating and for-
malizing dynamic semantics, but the only kind we will consider here is operational
semantics, specified informally. Imagining that there exists a computer ideally
suited to the direct execution of programs expressed in the language, we describe
what that computer would do in order to execute or evaluate each kind of language
construct. We might say, for example, that the construct while E do S, where E is
any Boolean expression and S is any statement, is executed by performing the
following actions:

1. E is evaluated, producing a result of True or False. If the result is False,
nothing further is done. Otherwise,

2. s is executed and all is repeated from step (1).

How E is evaluated and how s is executed would be specified in other parts of the
language description.

1.2 THE MINILANGUAGE CAL

To provide a miniature programming language that will serve as an example in
later chapters, we now introduce a language named Cal. In the following example
of a Cal program, the line numbers at the left have been added for reference
purposes only:

1 int num; int sumdiv; int d; int half; char cr.
2 inint --> num;

3 loop num + 1 --> num; num / 2 --> half;

4 1 --> sumdiv; 1 --> d;

5 loopd+1-->d

6 *** while d <= half ***

7 sumdiv + (/num/d*d = num // 4 // 0/) --> sumdiv
8 end

9 ***% while sumdiv /= num ***

10 end;
11 #13 --> cr:
12 display num, cr, #(@cr - 3).
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The only data types in Cal are integer and character. In line 1, num, sumdiv,
d, and half are declared as integer variables, and cr is declared as a character
variable. Assignment statements are marked by the token —-> and are written with
the destination variable at the end, not at the beginning as in Pascal. Execution of
the statement in line 2 will change the value of the variable num. The expression
for the new value consists of the reserved word inint, which has the following
peculiar property: When evaluated, it waits for an integer to be read from an input
device and then yields that integer. Input of character data works in a similar way,
using the word inch.

Lines 3 through 10 constitute a loop, with the termination test at the end of
its body in line 9. The termination comparison is delimited by the token pair ***
while on the left and the token *** on the right. Within this loop, after the four
assignment statements in lines 3 and 4, there is an inner loop extending from line 5
to line 8. Its termination test is in the middle of its body, in line 6.

The assignment statement in line 7 contains a conditional expression of the
form (/ ¢ // E1 // E2 /), where C is a comparison and E1 and E2 are expres-
sions. The value of such a conditional expression is the value of E1 if C is true and
the value of E2 if C is false.

Cal provides the usual four arithmetic operators, with multiplication and divi-
sion taking precedence over addition and subtraction. The available comparison
operators are =, <, <=, and /=. The unary operator # takes an integer and yields the
corresponding ASCII character; thus line 11 assigns the carriage-return character
(ASCII code 13) to cx. The unary operator @ takes a character and yields the
corresponding integer. The display statement in line 12 outputs the integer value
of num, a carriage return, and a line feed (code 10).

What does this Cal program do? A *“perfect number” is an integer that is
equal to the sum of all its exact divisors, including 1 but excluding itself. Since 6 =
1 + 2+ 3, 6 is a perfect number. Given an integer as input, the program computes
and outputs the smallest perfect number greater than that integer. For example,
given 6 as input, the program will produce 28 as the output.

The remainder of this section consists of a semiformal specification of the
Cal language organized around the production rules of an extended BNF grammar.
Under each rule, any associated points of semantics are stated in precise and con-
cise English. SS stands for static semantics, and DS stands for dynamic semantics.
A similar specification of another language, FCProcs, is given in the appendix.

program = decl {";" decl} "." series "."
DS: The series is executed.

decl = type <idxr>
SS: The <idr> cannot be the same as a reserved word or another
declared identifier.

type = "int" | "char"

series = stmt {";" stmt}
DS: The constituent stmts are executed in left-to-right order.
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stmt = asmtst | loopst | outst

asmtst = expr "-->" <idr>
SS: The <idr> must have been declared as a variable of the same type as
the expr.

DS: The expr is evaluated and the result placed in the memory location
allocated to the <idr>.

outst = "display" expr {"," expr}
DS: Each expr is evaluated in turn, and its result sent to an output device.

loopst = "loop" [series] "***" "while" comp "***" [series]
"end"
DS: The first series, if present, is executed. The comp is evaluated. If it
is true, the second series, if present, is executed and the entire process
is repeated.

comp = expr relopr expr

relopr = "=" | "<" | "<=" | "/="
SS: Both exprs must be of type integer.
DS: E1 R E2—E1 is evaluated to an integer N1. E2 is evaluated to an inte-
ger N2. If N1 relates to N2 according to R, the comp is true; otherwise, it
is false. = means “is equal to”; < means “is less than”; <= means “is less
than or equal to”; /= means “is not equal to.”

expr = term {addopr term}
addopr = n4n I w_mn
SS: If there is more than one term, they must all be of type integer.

DS: The first term is evaluated. Each subsequent term preceded by a +
(respectively, -) is evaluated and its result added to (respectively, sub-
tracted from) the overall result so far.

term = factor {multopr factor}
multopr = "*" | AL
SS: If there is more than one factor, they must all be of type integer.

DS: The first factor is evaluated. Each subsequent factor preceded by a
* (respectively, /) is evaluated and its result multiplied by (respectively,
divided into) the overall result so far.

factor = [unopr] primary

unopr = "@" | "#"
SS: The primary after an @ must be of type character. The primary after
a # must be of type integer.
DS: The primary is evaluated. If it is preceded by an @, the ASCII code

of the character is yielded, and if it is preceded by a #, the character
given by the ASCII code is yielded.



