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FOREWORD

Early in 1969, the Mathematics Department of Case Western Re-
serve University was given funds by the National Sclence Foundation
to conduct one of the first of the regional conferences devoted to a
special toplc in mathematics. Because of the presence in the depart-
ment of a strong group in dynamical systems, wlith Professor Otomar
Héjek at the fore, 1t was decided that the reglonal conference would
be devoted to global differentiable dynamics.

Since one of the objectlves of the regional conference program
of the National Sclence Foundation 1s to enrich the research and edu-
cational capabllities of mathematicians of a specific reglon, it 1s
clear that most of the participants would be drawn from the particu-
lar region in which the National Sclence Foundation invests 1ts funds.
However, 1t 1s clear that, without some catalyst from outside the
particular region, such a regional conference could only bring to-
gether mathematicians who would discuss among themselves the same
problems on which they had been working. Without the introduction of
the outside lecturer to draw together the results of a large disci-
pline and to outline the problems of the next few years, the regional
conference would do nothing more than draw together the same people
who meet regularly at the regional meetings of the American Mathemati-
cal Soclety.

The Regional Conference on Global Differentiable Dynamics,
held at Case Western Reserve University in Cleveland, Ohio, 2-6 June
1969 was fortunate to have Professor Lawrence Markus of the Univer-
sity of Minnesota as its principal speaker; Professor Markus gave ten
lectures 1n five days on global differentiable dynamics. Realizing

the 1lmportance of new ideas and different points of view, the
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Mathematics Department of Case Western Reserve Unlversity supple-
mented the grant of funds by the National Science Foundatlon, and in-
vited other leading mathematicians from outside the reglon to gilve
hour addresses complementing the lectures of Professor Markus. Pro-
fessor Joseph Auslander of the University of Maryland spoke on the
structure and homomorphisms of minimal sets, Professor M. L. Cart-
wright of Cambridge University and Case Western Reserve Unilversity
spoke on the basic frequencies of almost periodic flows, Professor
Walter Gottschalk of Wesleyan University spoke on ambits, Professor
G. S. Jones of the University of Maryland spoke on periodic and
near-periodic flows, and Professor Emilio Roxin of the University of
Rhode Island spoke on differential games of pursuit.

The present volume comprises the invited addresses, together
with many of the papers given by the participants 1n the conference.
The major exception 1s that of the lectures of Professor Markus which,
at the request of the Natlonal Sclence Foundation, were to be pub-
lished elsewhere in the form of a monograph (cf. Lawrence Markus,

Lectures 1n Differentiable Dynamics, Reglonal Conf. Series 1n Math.

No. 3, Amer. Math. Soc., Providence, 1971).

Both Professor Héjek, who was the principal organizer and di-
rector of the affairs of the conference, and I believe that the con-
ference was far more successful than we had hoped for, our criteria
being the sclentific Interaction of the participants, the informality
and depth of the discussions among the participants, and, most signi-
ficant of all, the 1lnitiation of mathematical collaboration among
several of the participants. The lectures of Professor Markus and
the other invited speakers mentioned above were of the highest calil-
ber and served to stimulate the interest of all the participants.

Speclal thanks are due to the secretarial staff of the Mathematics



Department, as well as to many members of the academic staff, who

helped in the arrangements for the conference.

A. J. Lohwater
Chairman, Department of Mathematics
Case Western Reserve University



S. Ahmad

J. Auslander
D.G. Belanger
N.P. Bhatia

M. Braun

D. Carlson

M. Cartwright
H. Chu

E. Coven

G. Della Riccia
C. DePrima

M. Eisenberg

P. Frederickson
L.W. Goodwyn

W. Gottschalk
0. Héjek

S. Hastings
G.S. Jones

V. Jurdjevic

L. King

V. Lakshmikantham

A.J. Lohwater
L. Markus

L. McAuley
R. McCann

S. Mitter

E. Roxin

L. Shapiro

List of Participants

Oklahoma State University
University of Maryland

Case Western Reserve University
Case Western Reserve University
Brown University

Case Western Reserve University
Girton College, Case Western Reserve
University of Maryland

Wesleyan University

Indiana University

California Institute of Technology
University of Massachusetts
Case Western Reserve University
University of Kentucky

Wesleyan University

Case Western Reserve University
Case Western Reserve University
University of Maryland

Case Western Reserve University
University of Massachusetts
University of Rhode Island

Case Western Reserve University
University of Minnesota

Rutgers University

California State College

Case Western Reserve University
University of Rhode Island

Yale University



D. Simanaitis
A. Strauss

W. Tape

C. Titus

T.S. Wu

Case Western Reserve University
University of Wisconsin
Wayne State University
University of Michigan

Case Western Reserve University



TABLE OF CONTENTS

SHATIR AHMAD .ccceencens cececsssssennane 675 w6 8 Ore w8 €8 BONE €V €101 8 iove e win 8

Flows of Characteristic O+

JOSEPH AUSLANDER scsccccscsccccsasccsscscoscsssosossascassassonsnsannnss

Structure and Homomorphisms of Minimal Sets

MARTIN BRAUN .ceececccecacasas eeeecssssessstesrssssnsss et essanas

Flows Near a Singularlty

M.L. CARTWRIGHT +cveeccccanccasccsscssasascscscasassscsscsscasanss
Almost Periodic Solutions of leferentlal Equations and Flows

HSTN CHU cooososcnsasoscssososesasosssssssssssessssssssssesassas

Topological Dynamlcs and Compact Transformation Groups

ETHAN M. COVEN .ccccecccccccscasscoccansooacsasosssssnssaanossasasns

A Note on the Existence of Asymptotlc Palrs of Points

GIACOMO DELLA RICCTA .ccevecenans . B T T X T E R T T RSP PUpp Y

Stable Semi-Flows (One—Parameter Semi-Groups) on Locally
Compact or Complete Metric Spaces

MURRAY EISENBERG «eccececenccanss N

A Theorem on Extensions of Minimal Sets

PAUL O, FREDERICKSON eccceeecscceososccssssccsossaseansasanansoas

On the Poincaré Index for Flows on 2-Manifolds

L. WAYNE GOODWYN «cceeeanacns cessesasnssesee . seseseeseseacaaes

Topological Entropy Bounds Measure- Theoretlc Entropy

WALTER GOTTSCHALK ..ceevvevceccen O S S R S RSPl

Ambits (Abstract)

LOUIS F. MCAULEY .....c... S G S S F S SR

Concerning One-To-One Continuous Images of the Reals

ROGER Co MCCANN ..ccceeeececnenocacennnscnsoososscnnssasnssannnss

Local Sections for Slmultaneous Local Dynamical Systems

EMTLTO Oy ROXIN ' q.0ie sie e s oo wie s o0 a wiosin is o ais wis cteecesseersrnsanns

Some Global Problems in Differential Games

LEONARD SHAPTRO o ssin w0 sissseis siesssssesssssssiosesisssssssssssesses

The Structure of H-Cascades

LEONARD SHAPIRO «.... Secessetcetesatttetttttesstteneeseataenesnnns

On the Structure of Minimal Flows

AARON STRAUSS cecocossescccscscncscascasossassesssssssssasosnsssns

Global Growth Rates for Solutions of Certain Perturbed
Differential Systems

TA=SUN WU ceececccccnncnan cevescas setesessseretacttesassnasnneens

Disjointness of Minimal Sets



FLOWS OF CHARACTERISTIC OF

Shair Ahmad
(Oklahoma State University)

1. INTRODUCTION

The purpose of this paper 1is to classify a certain class of
dynamical systems on the plane; namely, those 1n whlch all closed
positively invariant sets are positively D-stable, 1.e. stable in
Ura's sense (see [11]). Such flows are called flows of character-
istic O+. In Section 2 we give some of the baslc definitions and
notations that are used throughout the paper. In Section 3 we prove
some results of a more general nature which are later applied to

flows of characteristic 0+

on the plane. It 1s proved that if the
phase space X of a flow 1s normal and connected and the set of
critical points S 1s globally + asymptotically stable, then S 1is
connected. Further, if the phase space X of a flow of character-
istic ot 1s connected and locally compact, then a compact subset M
of X 1s a positive attractor implies that M 1is globally + asymp-
totically stable.

In Section 4 we discuss flows of characteristic 0" on the
plane. Three mutually exclusive and exhaustive cases are considered.
It 1s shown that if the set of critical points S of such a flow is
empty, then the flow 1s parallelizable. If S is compact, then it

elther consists of a single point which is a Polncaré center, or it

1s globally + asymptotically stable. If S is not compact, then



either R2 =S, or S 1s + asymptotically stable; S and the

region of positive attraction AT(S) of s, each has a countable
number of components. Further, each component of AT(S) 1is homeo-
morphic to R2. At the end of this section, we summarize all the
results of this section in the form of a complete classification of

such flows.

+
In Section 5 we discuss flows of characteristic O on the

plane, i.e., those in which every closed invariant set is positively
and negatively stable in Ura's sense. We prove that such a flow 1s
either parallelizable, or it has a single critical point which is a

global Poincaré center, or all points are critical points.

2. NOTATIONS AND DEFINITIONS

Let R, R+, and R denote the sets of real numbers, non-
negative, and non-positive real numbers, respectively. Given a
topological space X and a mapping wm of the product space X X R

into X, we say (X,m) defines a dynamical system or flow on the

phase space X 1f the following conditions are satisfied.

1. Identity axiom: w(x,0) = x.

2. Homomorphism axiom: w(mw(x,t),s) = m(x,s+t).

3. Continuity axiom: wm 1is continuous on X x R.

For brevity, we denote w(x,t) by xt. For each x € X, we

let C(x) denote the trajectory or orbit through x, i.e. C(x)

= xR. Similarly, the positive and negative semi-trajectories through

x are represented by C'(x) and ¢ (x), respectively, i.e. CT(x)

= xR+

and C (x) = xR. We let L*(x) denote the positive (or
w -) 1imit set of x, i.e. L*(x) = n{cT(xt): t € R}. Similarly,

L (x) denotes the negative (or a -) 1limit set of x. A point x



is called a critical or rest point if xR = x. A subset M of X

is sald to be invariant if C(M) = M, and positively (negatively) in-

variant if cT(M) =M (c™(M) = M). A closed invariant set M 1is mini-

mal if it has no proper subset which 1s closed and invariant.
Throughout thls paper, we use oM and M to represent the

boundary and closure of M. Gilven a Jordan curve C on the plane

R2, we let 1int(C) denote the bounded component of R - C. Let

2)*

(R = R2 U {®} Dbe the one point compactification of the plane.

A closed invariant set M 1is sald to be positively Liapunov

stable, or more simply, positively stable, 1f for every neighborhood

U of M, there exlists a neighborhood V of M such that C+(V)

cU. M 1is sald to be a positive attractor if there exists a neigh-

borhood U of M such that L+(U) C M. The largest such neighbor-

hood U 1s called the region of positive attraction of M and will

be denoted by AT(M). M 1s said to be + asymptotically stable if
1t is both positively stable and a positive attractor. It is saild to
be globally + asymptotically stable if 1t is + asymptotically stable
and AT(M) = X. \

For each x € X, the (first) positive (negative) prolongation

pt(x) (D" (x)) of x 1s given by

p*(x) = n {ct(n)} (D7(x) = n {cT(N)}),
Nen(x) Nen(x)

where 7(x) i1s the neighborhood filter of x.

The (first) positive (negative) prolongational limit set of x

is given by

Jt(x) = n {pt(x)} (37(x) = n {D7(xt)}).
tER tER



It is known and easy to verify that LT(x) c J+(x). Further,
1f X 1s a Hausdorff space, then D'(x) = c¢T(x) u Jt(x).

A closed invariant set M 1s said to be positively D-stable
1f DY(M) = M. (The theory of prolongation and D-stability is due
to Ura (see [11], [12], and [13]). Ura [11] refers to D-stability
as stability and to Liapunov stability as L-stability.)

It is easy to verify that if X 1s locally compact and a
closed invariant set M 1s stable (i.e. stable in Liapunov's sense
as defined above), it is also D-stable. The converse is false.

The following theorem, which we use several times in this

paper, is due to Ura [11].

THEOREM (URA). Let (X,m) be a dynamical system on a locally com-
pact space X, and let M be a compact subset of X. Then M 1is
positively stable 1f and only if it 1s positively D-stable.

REMARK. The statement "X i1s locally compact" is used in the Bour-
bakl sense throughout thils paper, i.e. X 1s assumed to be a
Hausdorff space.
3. FLOWS OF CHARACTERISTIC ot

Before discussing flows of characteristic O+, we prove a
lemma and a proposition concerning flows in general.
LEMMA 1. Let (X,m) be any dynamical system. If x € X and

+ + +
¥1:¥, € L'(x), then y; €D (ye) and y, € D (yl).

Proof. We note that



i = n ct(n)3,
D" (y;) Nen(YI){ (N)

where ﬂ(yl) denotes the neighborhood filter of yq- Since

¥i:9, € L*(x), for each N € ﬂ(yl) and M € n(y2), there exist

t,,t, € Rt with xt

+
10%5 € N and (xtl)t2 € M. Hence y, €C (N), and

1

consequently, y, € D+(y1). Similarly, vy, € D+(y2).

PROPOSITION 3.1. Let (X,m) be a dynamical system on a normal (and
Hausdorff) connected topological space X. If a closed invariant
subset F of X 1s globally + asymptotlcally stable, then F 1s

connected.

Proof. Suppose F 1s not connected. Then there exist two non-

empty disjoint closed sets Fl and F2 such that F = Fl U F2.

Since X 1s normal, there exist two disjolint open neighborhoods U1

and U of F and F

> 1 respectively. On the other hand, since F

2’

is positively stable, corresponding to the nelghborhood U = U, U U2

1
of F, there is an open neighborhood V of F such that cT(V) c u.
Therefore, if we let Vi =V N Ui' i=1,2, then for each x € Vi,

ct(x) < U; since ct(x) 1s connected. Thus, LY(x) c Fys 1l.e.

+
vV, €A (Fi) since U, NF =g, 1 # J. Hence, we have shown that
F1 and F2 are positive attractors; consequently A+(F1) and
A+(F2) are open, since the boundary of each 1s closed and invariant.

But this contradicts the assumption that X 1s connected, since

X = AT(F) = A+(F1) U A+(F2), where A+(F1) and A+(F2) are clearly



non-empty disjoint open sets. This completes the proof of Proposi-

tion 3.1.

DEFINITION 3.1. A dynamical system (X,m) 1s sald to have character-
+

istic 01 if and only if D'(x) = ct(x) for all x € Xx.

The above definition is equivalent to saying that (X,m) has
characteristic O+ if and only if every closed positively invariant
subset of X 1s positively D-stable.

It follows that 1f the phase space X of a flow of character-
istic 0% 1s a Hausdorff space, then D'(x) = ¢t(x) u L¥(x), for

all x € X.

LEMMA 2. Let (X,m) be a flow of characteristic OT. If x € X

such that L (x) # 4, then x € L (x).

Proof. Suppose L (x) #¢ and let y € L (x). Then, y € D (x),

and hence x € D'(y) = cT(y). On the other hand, y € L (x) dimplies

that CT(y) ¢ L7(x), since L7(x) 1s a closed invariant set.
Therefore, x € L (x).

PROPOSITION 3.2. Let (X,m) be a flow of characteristic O+ on a
connected locally compact space X. If M 1s a compact positively
Invariant subset of X and M 1is a positive attractor, then M 1is

globally + asymptotically stable.

Proof. Since M 1s a closed positively invarlant set, we have
DY(M) = M. Therefore, M is positively stable, by Ura's Theorem.

It 1s sufficient to show that 3AT(M) = @. Suppose that aat(M) # &,
and let x € 3AT(M). Let nA(x) be the trace of the neighborhood



filter M(x) of x on A = AT(M). Then, for each N, € ﬂA(x).
g # L+(NA) c M. Since M 1is compact, the cluster set of the filter
base {L+(NA)|NA € nA(x)} is a non-empty subset of M; hence

JT(x) N M # @#. However, this contradicts the assumption that (X,T)
has characteristic 01, since aA+(M) is a closed invariant set
disjoint with M. Therefore, 3AT(M) = # and the proof of Proposi-

tion 3.2 1s complete.

4, FLOWS OF CHARACTERISTIC O ON THE PLANE

Throughout thls sectlon, we assume the phase space to be the

2

plane R“ and (Rz,v) to be a fixed flow of characteristic 0. We

let S denote the set of rest points of this flow.

LEMMA 3. For each x € X, if LY (x) #g, then L¥(x) 1is either a
periodic orbit or it consists of a single rest point.

Proof. If  LY(x) contains a rest point 8g» then Lt(x) = {so}.
For, y € L+(x) implies that y € D+(so) = [so}, by Lemma 1. Sup-

pose that L+(x) conslists of regular points only. Then, to complete
the proof of the lemma, it is sufficlent to prove that L'(x) 1is

compact. We note that if y € Lt(x), then ct(y) = Lt (x). For,

z € LY(x) 1implies that z € D'(y) = c™(y). Also, c'(y) c L¥(x)

since L¥(x) 1s a closed invariant set, and hence cty) = tt(x).
Since CY(y) € C(y) c L¥(x), we have ©C(y) = L*(x). Therefore,

L(x) 1s a minimal set (cf. p. 26 of [6]). We recall that if M is
2

a minimal subset of 'R which 1s not compact, then for each m € N,

+
L(m) =g (cf. p. 37 of [6]). Suppose that L+(x) is not compact,

and let vi and Yo be two distinet points in L+(x). Then,



and

+ + + +
y, €D (y2) =C (y2) and y, €D (yl) c (yl). But, if %,

t are positive numbers such that ¥y, = y2t1 and Vo = ylte, then

2

¥, = yl(t1+t2); this shows that C+(y1) is a periodic orbit. Hence,
Lt(x) 1s a periodic orbit, since LY(x) = C+(y1), as 1t 1s a minimal

set; thus contradicting the assumption that LY(x) 1s not compact.
For a proof of the following theorem see Bhatia [5].

THEOREM (BHATIA). A flow F on a metric space X 1s dispersive if
and only if for each x € X, D'(x) = CT(x) and there are no rest

points or periodic orbits.

THEOREM 4.1. If S =@, then the flow (Rg,v) is parallelizable.

Proof. We note that for each x € Re, Lt(x) = g, and hence D'(x)

= ¢t(x) = ¢*(x). For, if LY(x) #@, then by Lemma 3, it must be a
periodic orbit since it consists of regular points only. But this 1s
impossible since the bounded component of a periodic orbit contalns a
rest point. Thus, the proof of our assertion follows from Bhatila's
Theorem, stated above (cf. Auslander [2]) and the fact that the no-
tions of parallelizability and dispersiveness are equilvalent for a
flow on the plane (see Antosiewicz and Dugundji [1]).

THEOREM 4.2. If R2 contains a periodic poilnt, then S 1s a single-
ton. Further, 1f S = {so}, then one of the following holds.

1. s is a global Poincaré center.

0

2. 8q is a local Poincaré center. The neighborhood N of

80s consisting of 89 and periodic orbits surrounding 8q, is a



