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0. Introduction

0.1. The mapping degree.

In these notes we are concerned with the mapping degree problem in the pres-
ence of group symmetries.

It seems to be a truism to say that the mapping degree is one of the most
important topological tools employed in the study of nonlinear problems. The solv-
ability of equations, multiplicity results, structure of solutions, bifurcation phenom-
ena, geometric and (co)homological characteristics of functionals — this is a rather
incomplete list of the subjects where the mapping degree plays a very important
role.

The basic principles of the degree theory in the finite-dimensional case have
been worked out by Kronecker, Poincaré, Brouwer and Hopf. Even nowadays the
famous Hopf Classification Theorem and the Brouwer Fixed Point Theorem remain
as brilliant examples of how the mapping degree works within topology as well as
in its applications.

Significant contributions to the degree theory have been done by Borsuk and
Leray-Schauder in the early thirties. Borsuk established that the degree of an odd
map of a finite-dimensional sphere into itself is odd. By the same token, he observed
for the first time that symmetries can lead to the restriction of possible values of
the mapping degree. On the other hand, Leray and Schauder have extended the
classical finite-dimensional degree theory to the infinite-dimensional case, defining
it for maps of the form I + A, where I is the identity operator and A is a compact
operator. This work was especially important from the viewpoint of extending the
“application area” for the mapping degree methods.

Since the times of Borsuk, Leray and Schauder many mathematicians lg.ave been
involved in developing degree theory. We refer the reader to [St] for an excellent
survey of related results as well as an extensive list of references. Although there are
many schemes reducing the study of nonlinear problems to calculating the mapping
degree, computing (or even estimating) the degree in a practical way remains an
actual problem in general. From the thirties until these days the degree problem for

equivariant maps is attracting a good deal of attention.
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0.2. The mapping degree and group symmetries.

Recall that if X and Y are metric spaces and G is a topological group acting on
X and Y then a continuous map f : X — Y is said to be equivariant if fgz = g fx
for all € X and ¢ € G (the oddness presents the simplest example of equivariance
with respect to Z, = {£I}).

Why should anyone be interested in the degree of equivariant maps? Appar-
ently, there are at least two reasons for that. First, group symmetries appear in
nonlinear problems in a very natural way. For instance, if an elliptic equation is
defined on a domain 2 C R" invariant with respect to some subgroup G C O(n),
then G acts naturally on the corresponding Sobolev space, and the integral operator,
say, B, associated with the equation is G-equivariant. In addition, the eigenspaces
of B'(0) are G-invariant and (usually) are of finite dimensions, so that the stan-
dard Lyapunov-Schmidt procedure reduces the bifurcation problem to studying G-
equivariant maps in finite-dimensional G-spaces. Note also that in the above case,
calculating degrees of the equivariant maps is in close connection with studying geo-
metric and (co)homological characteristics (like genus, G-category, cup-length, etc.)
of the invariant functionals associated with the initial equation (see, for instance,
[Barl]).

Another source of “real life” symmetries comes from autonomous ordinary dif-
ferential equations. If one looks for periodic solutions then the S!-action on a space
of periodic functions (induced by the time translation) should be taken into account
(see, for instance, [IMV]).

A more “academic” example of how degrees of equivariant maps appear as an
appropriate subject to study, comes from group representation theory. Namely, the
problem of classifying representations of a compact Lie group G up to G-equivariant
homotopy equivalence leads to equivariant versions of the Hopf Theorem (see, for
instance, [Dil]).

Except for “external” motivations for studying degrees of equivariant maps (a
wide field of applications) there are also “internal” ones connected with the following
two observations. As is well-known, the difficulties in degree calculations increase
with increasing dimension. From this point of view the presence of symmetries alfows
in many cases to decrease the dimension of the problem in question. For example,
if a finite group G acts smoothly and semi-freely on smooth, compact, connected,
oriented n-dimensional G-manifolds M and N then one can reduce the computation
of the degree of an equivariant map f : M — N to studying the behavior of f on the
set MY of G-fixed points of M only. Namely, assume M and N are connected.
If dim MS # dim N€ then deg f = 0 (mod |G|); if dim MY = dim N¢ and, in
addition, MS, NC are oriented then deg f = a - deg f[M® (mod |G|), where a is
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relatively prime to |G| and modulo |G| is uniquely determined by the actions of
on M and N (cf. Chapter 3).

In addition, in many cases one can get an important information on the degree of
an equivariant map only from algebraic characteristics of the corresponding actions.
For instance, if a finite p-group G acts orthogonally without G-fixed points on
finite-dimensional sphere S then for any map f : S — S commuting with the G-

action the following relation holds: deg f =1 (mod p).

During the past sixty years, the degree problem of equivariant maps has been
attacked using various methods. After Borsuk, the following development of the
theory was mostly due to P.A. Smith and M.A. Krasnoselskii. Smith introduced
a special cohomology theory on a category of Z,-spheres for a prime p which, i
particular, was used in order to express degrees of equivariant maps via the ho-
mological characteristics of the corresponding actions (the so-called Smith indices).
and via the degrees of the restrictions of the maps in question to the relevant set~
of fixed points (if defined). This gives rise to the so-called “homological approach”™.
Krasnoselskii discovered a deep connection between the “degree” problem for equiv-
ariant maps of Z,-spheres (p-arbitrary) and the problem of equivariant extension of
maps — essentially, the equivariant homotopy types appeared for the first time as an
appropriate context for study (the so-called “geometric approach”).

These notes are an attempt to describe in detail some recent achievements of the
geometric approach and to present a comparative (albeit unavoidably incomplete
study of the results obtained by geometric and homological methods.

Since the literature on degree theory for equivariant maps is still growing enor
mously we only mention four books and one survey relevant to our discussion. These
are:

- Dold’s book [Do1] on the topology behind the finite-dimensional degree theory:

- Bredon's book [Bre] on the equivariant topology background;

- Ize, Massabé and Vignoli’s book [IMV2] where the geometric approach for lin-
ear S'-actions has been worked out in details (actually, equivariant maps of spherex
of different dimensions are studied in [IMV2]. See also [IV], where linear actions of
arbitrary abelian groups are considered, and [IMV1] for more general con§'tructi0ns):

- Borisovich and Fomenko’s survey [BF] on homological methods in a degree
theory for equivariant maps;

- Bartsch’s book [Barl] on the connection between the Borsuk type theorems
and variational problems with symmetries;

Of course, we should mention Krasnoselskii’s paper [Krl] as the starting point

for our research.
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0.3. The geometric approach.

1. In the geometric approach, the degrees of two equivariant maps from a
topological (compact, closed, connected, oriented) n-dimensional manifold M to the
oriented n-dimensional sphere S are compared using equivariant extension theorems.
More precisely, we can define a cylindric action of a group G on the cylinder C =
M x [0, 1] by setting it to be trivial on the segment [0,1]. We can also define a conic
action of G on a ball B bounded by the sphere S (via the radial extension). Let O
be the center of the ball. For equivariant maps ®,¥ : M — S an equivariant map
fo: M x{0,1} — S C B is obviously defined. Let F : C — B be an equivariant
extension of fy and K = F~1(0). If orientations on C' and B are properly chosen
then there exist fundamental classes O € H,(C,C\K) and Op € H,(B,B\{0})
which determine the degree of F' (as a map of manifolds with boundaries) by the
formula Fy(Ok) = (deg F)Oo (cf. e.g. [Dol], p. 268). Note also, that deg F' =
+(deg ® — deg ¥). Let G be finite and let (H,),...,(H¢) be all the orbit types of the
G-action on M (and hence on C'). Without loss of generality one can assume that
every ¢ € G either changes (simultaneously) orientations on M and S or preserves
them. Suppose the extension F' satisfies the following conditions:

(@) K=Uj, Tjy ToNT, =0 if s # p;

(p) T; = G(K;) for some compact K;, j =1,...,¢;

(v) Hj(K;) = Kj;

(8) g(K;)Nh(K;)=0if gh=" ¢ H;.

Now using («) and the additivity of the degree, one gets deg F' = Z§=1 deg F;
where F} is the restriction of F' on a sufficiently small neighbourhood of T;. Bearing
in mind that F is equivariant and using (3) — (), we have deg F; = a;|G/H | where

a; is the degree of F' in a small neighbourhood of I';. From this we deduce the

formula
Vi
(0.1) deg F' = +(deg® — deg ¥) = Y _ a;|G/H;| ,
j=1
and so ¢
(0.2) deg® = deg ¥ (mod GCD{|G/H,|i_,}),

which is the typical “comparison principle” result in the geometric approach.
If now one wants to estimate the degree of an arbitrary equivariant map @ :
M — S it suffices to find only one equivariant map ¥ whose degree is easy to calcu-

late, and to use formula (0.2). In many cases it is not hard to find the appropriate
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¥. For instance, if M and S coincide as the G-spaces then one can take the iden-
tity map for W. If S¢ = {¢ € S| gz = z for all ¢ € G} # 0 then one can set
U(r)= pt € SY.

This approach has been first realized by M.A. Krasnoselskii [Kr1] for the case

when G = Z, acts freely on a sphere.

2. The above discussion gives rise to the following problem. Let G be a compact
Lie group, let X,Y be a couple of metric G-spaces, and let A C X be a closed in
variant subspace. What are conditions on X and Y which imply that an equivariant
map f : A — Y has an equivariant extension over X? This problem was addresse
by several authors, e.g. J. Jaworowski [Jal, Ja2], R. Lashof [LaJ, M. Madirimov
[Mad1l, Mad2] and others. All these authors used the reduction of the above prob-
lem to the problem of extending sections of fiber bundles associated with the maps
in question. In this book we develop another general approach which is intuitively
easier and allows us to obtain stronger extension results in certain cases. What i~
more important, this extension technique provides some means for controlling the
extension map in a manner required by the “comparison principles” like the onc
described above. Again, the idea behind this approach can be traced back to the
original paper of M.A. Krasnoselskii [Kr1].

The key to the extension results we are looking for is the following

Definition. Let a topological group H act on a metric space E. Let Dy C E be
open in its closure D. Then D is said to be a quasi-fundamental domain of the
H-action on E if the following conditions are satisfied:

(a) H(D) = E;

(b) g(Do) N k(Do) =0 (g # h; g, h € H);

(¢c) E\H(Do) = H(D\Dy).
If E is finite-dimensional and the following additional condition holds

(d) dim D = dim E/H; dim(D\Dy) < dim D; dim H(D\Dy) < dim E

then D will be called a fundamental domain for the H-action on E.

Note that, if H is a discrete group then one can set Dy to be the ingerior of D.
Hence the definition above naturally complies with the classical one (cf. e.g. [DFN].
p- 169).

It turns out that a (quasi-)fundamental domain exists for any free action of a
compact Lie group on a metric space.

Assume now that a compact Lie group G acts on a metric space X and let A C
X be a closed invariant subset such that the action of G on X'\ A is free. By the above
observation there exists a (quasi-)fundamental domain D(®) of the G-space X\A.
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Let D" be the corresponding open subset of D(®) and let X; = AU G(D©\D{").
Applying the above observation once again to X;\A4 we get X5, etc. So one has a
closed invariant filtration X = Xy D X; D X,... D A. If X\ A is finite-dimensional
then this filtration is finite. Let Y be another metric G-space. It turns out that if
X\ A is finite dimensional then any equivariant map A — Y extends over X if for
all 2 = 1,2,... any equivariant map X; — Y has a (non-equivariant) extension over
X; UDU=1 The same is true for extensions of equivariant homotopies.

Combining the last argument with the standard induction over the orbit types
(see, for instance, [Dil]) leads to a rather general equivariant version of the well-
known Kuratowski-Dugundji Extension Theorem. In particular, if for any stationary
subgroup H of the action of G on M one has dim {z € M | hz = z for any h €
H} < n(H) and if the set S = {y € S| hy = y for any h € H} is locally
and globally k-connected for each k = 0,1,2,....n(H) — 1, then the existence of an
equivariant extension with properties (a) - (¢) required by the comparison principle
follows immediately from the considerations above.

Using this scheme we strengthen the corresponding degree results by Krasnosel-
skii [Krl], Zabrejko [Zal, Za2], Bowczyc [Bowl, Bow2], Dold [Do2], Daccach [Dac]
and others.

To some extent, this approach can be characterized as “geometric equivariant

obstruction theory without CW-complexes”.

3. The next step of our program is to improve the general geometric approach
in such a way that one could treat the following problems:

(a) to replace in formulas (0.1) and (0.2), a finite group (lengths of the orbits)
by an arbitrary compact Lie group (Euler charactaristics of the orbits);

(b) to eliminate the connectedness conditions with respect to the sets S;

(¢) to express explicitly the degree of an equivariant map via geometric char-
acteristics of actions and degrees (if defined) of the restrictions of the given map to
appropriate fixed point sets.

To this end, assuming G to be an arbitrary (not necessarily finite) compact Lie
sroup, we impose the following additional conditions: M is a smooth G-manifold
and S is a G-representation sphere. These assumptions allow us to take advantage
of some standard (but important) tools from Riemannian G-geometry (invariant
tubular neighborhood, normal slice, invariant foliations, etc.), algebraic topology
(cap-product, Thom class, etc.) and piecewise linear topology. The main idea
remains the same: to construct an equivariant extension F' in such a way that the
set F71(0) is “computable”. But now we provide F' with more “delicate” properties
than those formulated in (a) — (é) (for the precise formulation see Lemma 3.8).

Our approach is essentially based on the following three observations.
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1) It is well-known (see, for instance, [Bre|) that if M is a compact smooth
G-manifold and N C M is a G-submanifold, then there exists an invariant tubular
neighborhood of N in M. In particular, this means that there exists an invariant
one-dimensional foliation around N. If now N is the union of all non-principal orbits
for the action of G on M, then N is not a submanifold of M in general, so that it
may happen that there does not exist a tubular neighborhood around N. It turns
out, however, that there exists an invariant one-dimensional foliation around N in

this case as well.

2) Let U be an oriented n-dimensional manifold, V' an n-dimensional vector
space and D its k-dimensional subspace. Assume W) is an open subset of V' such
that W, is contratible to D \ 0 and W, J(V \ D) = V\ 0. Let f : U — V be
a continuous map such that & = f~1(0) is compact. Suppose, finally, that there
exists an open subset U; C f~!(W)) such that U; (U \ f~}(D)) = U\ K. Denote
by 7} the Thom class of D in V.

It turns out that degy f = 0 if f*(7)) = 0. In particular, under the above
conditions deg, f = 0 provided H"~%(U,U \ f~1(D)) = 0.

3) The last observation is concerned with “general position” theorems in the
equivariant context. Let V' be an orthogonal (d + 1)-dimensional representation
of a finite group G and B*t! the unit ball in V. Let G act freely on a compact
(d — k)-dimensional manifold X (k£ > 1). For any finite set of linear subspaces
L; CV, j=1,...,m, there exists an equivariant map f from X to B4*! such that
dim f~1(G(B*t! NL;) <dimLj—k—1forallj =1,2,..,m, provided dim L; > k.

These three observations in compliance with the above mentioned equivariant
extension technique based on the notion of fundamental domain lead to an essential
strengthening of the comparison principle in directions (a) - (c¢). In particular,
we generalize the corresponding results by Nirenberg [Ni2], Marzantowicz [Marl],
Wei Yue-Ding [We], Dancer [Dan], Liick [Lii], Komiya [Kom], Fadell, Husseini and
Rabinowitz [FHR] and others; we also strengthen in certain cases the results by
Ize, Massabo and Vignoli [[VM2, IV]; finally, we clarify the geometric nature of the
results by Borisovich, Izrailevich and Fomenko (Schelokova) [Sc4, BF]. ¢

For the precise formulations of our results we refer the reader to Section 3.1.
Below we present two corollaries which can be stated without additional explana-

tions.

Let G = T be a torus and let ®,¥ : M — S be T-equivariant maps. Let
My, M,, ..., M,, be the connected components of MT .

(a) For each j, dim M; = dim S7, there exists an integer a; = a(M;,S")
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completely defined by the G-actions on M and N such that

deg ® — deg U = ZO/]' - (deg ®|M; — deg W|M;);
J

(b) if dim M; # dim ST for all 7 then deg® = deg ¥ is uniquely determined by
the G-action on M and S.

Assume now a finite p-group G acts smoothly on compact, connected, oriented
n-dimensiomal manifolds M and N. Suppose that N¢ # () and all the fixed point
sets N (H) € Or(N), are connected and oriented. Let {M;|i = 1,2,...,m} be
the set of connected componenets of MY with dim M; = dim N . Then for any

equivariant map f: M — N |

deg f =) a;deg(f|M;) (mod p),

where the numbers «; are uniquely determined modulo p. In particular, if m = 0
then deg f =0 (mod p).

It should be noticed that we are interested in equivariant maps of G-manifolds
of the same dimension. Therefore, we are dealing with the Brouwer degrees only.
At the same time, the authors of [IMV1, IMV2, IV] deal with equivariant maps of
G-representation spheres of different dimensions, and calculate the so-called “equiv-
ariant degree” which coincides with the Brouwer degree if dimensions of the spheres
coincide. From this point of view certain results obtained in [IVM1, IVM2, IV] are,
of course, more general than those presented in our monograph. However, it is easy
to see that one can use the methods developed in our monograpgh to study the

above mentioned situation as well.

4. One of the natural applications of the stream of ideas discussed above is the
so-called Equivariant Hopf Theorem.

Recall a classical theorem of H. Hopf (see, for instance, [Di2], p. 122). Let
M be a closed, compact, connected, oriented n-dimensional manifold and S an
oriented n-dimensional sphere. Hopf’s theorem asserts that two continuous niaps
from M to S are homotopic iff their degrees are equal, and, in addition, that any
integer can be realized as the degree of some map from M to S. Suppose now
that a compact Lie group G acts on M and S. Classification of equivariant maps
M — S up to equivariant homotopy can not be achieved in the same straightforward
way as in the non-equivariant case. As an example, suppose that G is a finite
group acting orthogonally on vector spaces V and W. Denote by S(V) and S(W)
the correponding representation spheres. Suppose that for all subgroups H C G
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the dimensions of fixed point sets V# and W# are equal. Consider the following

statement :

(%) G-equivariant maps f1, f2 : S(V) — S(W) are equivariantly homotopic if

and only if

deg(f1]S(V)?) = deg(fo|S(W)H)

for all subgroups H of G.

Although this statement is not true in general (see [Ru]), there exists a rather
general set of conditions on G-spaces V' and W which ensure its validity. These
conditions can be obtained as a corollary of the so-called Equivariant Hopf The-
orem presented by tom Dieck in [Dil,Di2] and generalized by Tornehave [To] and
Laitinen [Lai]. An equivariant cohomology theory has been used as the main tool
in [Dil, Di2, Lai, To]. In these notes we discuss a more straightforward approach
to the Equivariant Hopf Theorem based on combining the usual (non-equivariant)
obstruction theory with the fundamental domain technique. In particular, this en-
ables us to obtain necessary and sufficient conditions for statement (*) and, in
addition, to strengthen the results on equivariant homotopy classification obtained
in [Di1,Di2,To,Lai].

5. Our final remark is concerned with the infinite dimensional aspect of the
degree problem for equivariant maps.

In accordance with the classical approach by Leray and Schauder, to carry out
the finite-dimensional results to completely continuous vector fields in Banach spaces
one should solve the following problem. Let ® = I + A be a completely continuous
vector field defined on the closure of a bounded region €2 in a Banach space E. Let
G be a compact Lie group. Assume ® is equivariant with respect to a pair of linear
representations of G in E. Given ¢ > 0 one should construct a finite dimensional
operator A, :  — E such that:

1) A, is equivariant;

2) ”A - An” <Eé.

This is not a difficult problem if one deals with vector fields which are equivari-
ant with respect to one representation only. However, in the case of two representa-
tions the “co-existence” of equivariance with infinite dimension leads to a “conflict”.
Namely, even in the case when G is a cyclic group it may happen that given a finite-
dimensional subspace E¥ C E there is no finite-dimensional subspace E¢ > E*,

which is invariant with respect to the pair of G-representations simultaneously.
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In these notes we develop a method, based on combining the classical Leray-
Schauder technique with some ideas from the theory of gaps between linear sub-

spaces, which allows us, in certain cases, to overcome this conflict.

0.4. Overview.

The book consists of five chapters.

The first chapter is devoted to studying the equivariant extension problem. In
the first section we present auxiliary information from equivariant topology. In the
second section we prove the existence of fundamental domains in a rather general
situation. By means of this result we prove the Equivarint Kuratowski-Dugundji

Theorem in the third section.

In the second chapter assuming M to be a closed, compact, connected, oriented,
topological n-dimensional manifold, and S to be an oriented n-dimensional sphere
we study degrees of maps M — S equivariant with respect to topological actions on
M and S. The first section is devoted to the general comparison formula for degrees
of equivariant maps (G is a finite group). Some special cases and generalizations of
this formula (p-group actions, free actions, torus actions, etc.) are considered in the
second section. We conclude the chapter with some counterexamples which show

that our hypotheses are sharp in some respect.

In the third chapter we assume that G is an arbitrary compact Lie group,
M is a smooth (closed, compact, connected, oriented) G-manifold and S is a G-
representation sphere. Under these assumptions we get sharper results than those
stated in Chapter 2. In particular, we remove the connectedness conditions with
respect to the G-action of on S, and in many cases give precise restrictions on the
possible values of degrees of equivariant maps from M to S.

This chapter is organized as follows. In the first section using our results from
Chapters 1 and 2 we introduce some integer-valued characteristics connected with
the actions of G on M and S. One may consider these characteristics as the ge-
ometric analogs of the so-called equivariance indices introduced by T. Fomenko
(Schelokova) in [Sc4] (see also [BF], [Dil], [Di2]). In terms of these characteristics
we formulate our main results and present some corollaries for p-group actions, torus
actions, semi-free actions, abelian group actions, etc. Taking an arbitrary smooth
manifold N instead of S and assuming a group G is acting on N so that NC # 0,
we use some straightforward arguments in order to show that most of our results
remain valid in this situation.

The second section is auxiliary. Here we present some properties of the cap-

product and Thom class allowing us to deal with “bad” orbit types in M (those for
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which dim M* > dim S¥).

In the third section we present the above mentioned invariant foliation and
equivariant general position lemmas. These lemmas together with the “elimination”
technique based on the usage of the Thom class are main ingredients in our approach.
They come together in the forth section where we give a proof of one of our main
degree results assuming G to be a finite group.

In the fifth section we extend our result to the case of an arbitrary compact
Lie group actions. In the sixth section we consider equivariant maps from one
G-manifold to another G-manifold without assuming the second manifold to be a

sphere. As a particular case, we consider here abelian group actions.

The fourth chapter is devoted to the degree problem for completely continuous
vector fields in Banach spaces. In the first section we develop some machinery for
solving the conflict between equivariance and infinite dimensionality. In the second

section we use this technique to get our degree results.

In the last chapter we present some applications of the methods developed in
the previous chapters.

In the first section we consider a semi-linear elliptic boundary value problem
which is associated with the corresponding linear problem of positive Fredholm
index. Under some symmetry assumptions we prove the existence of solutions of
arbitrarily large norm in the corresponding Holder space. We follow the scheme by
P. Rabinowitz [Ral] (see also [Marl]).

In the second section we give a lower estimate for the genus of the free part
of a finite-dimensional sphere S with a compact Lie group action. To treat this
problem we modify the well-known geometric aproach by M. Krasnoselskii [Kr1, KZ].
We apply the obtained result to the irreducible SO(n)-representations in spherical
harmonics.

In the third section we present an equivariant version of the Hopf Theorem
on the homotopy classification of mappings from a manifold to a sphere. Some
illustrative examples are considered.

The fourth section is devoted to the Borsuk-Ulam type theorems on the non-
existence of an equivariant mapping from an n-dimensional free G-sphere to an m-
dimensional one if n > m; we consider a situation of non-free actions on manifolds.

In the fifth section we give an elementary proof of the well-known theorem of
Atiyah-Tall [AT]:

Let V and W be two finite-dimensional orthogonal representations of a p-group
G (dmV = dimW), and let S(V) and S(W) be the unit spheres in V and
W respectively. Then there exists a G-equivariant map f : S(V) — S(W) with
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deg f # 0 (mod p) iff irreducible components of V' and W are conjugate in pairs
by elements (possibly different) of the corresponding Galois group.
Certain questions concerning G-equivariant maps of G-manifolds related to this

theorem are also discussed.
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