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1. INTRODUCTION

In this paper the term manifold will be used to mean a finite-dimensional
topological m-manifold M" --possibly with boundary ™. By a PL manifold
we will mean a piecewise linear manifold as in [16]. In a very broad sense the .
purpose of this paper is to investigate questiomsof the following type: If
f: M > N is a map between manifolds, when can £ be approzimated by "nice "
maps? The "nice" maps referred to include homeomorphisms, approximate fibra-
tions, and block bundles. The key idea common to all of these results is a
very carefully controlled engulfing. This is established very early in Section
3 and is then used at crucial points throughout the paper. This entire line
of research is a natural outgrowth of the approximation rgsults of [4] and [7].
The statements and proof of the theorems are influenced heavily by the corres-
ponding Q-manifold results of [6].

For the most part all spaces in this paper will be locally compact, sep-
arable and metric. A map f: X+ Y (i.e., a continuous function) is proper
provided that f—l(C) is compact, for all compact C c Y. If o is an open
cover of Y, then a proper map f: X + Y 1is said to be an a-fibration (or, f
has the a-Iifting property) if for all maps F: Z x [0, 1] - Y and FO: Z~>X
for which fFo = Fo’ there is a map G: Z x [0, 1] - X such that Go = Eo and
fG 1is a-close to F. This latter statement means that given any
(z, t) ¢ Z x [0, 1] there is a U € o containing both £G(z, t) and F(z, t).
Finally a proper map p: X+ Y is said to be an approximate fibration pro-
vided that it has the a-lifting property, for all open covers o of Y. We

refer the reader to [8], where the notion of an approximate fibration was in-

troduced and some of its basic properties were established.
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2 T. A. CHAPMAN

Our first result is concerned with the homotopy detection of those maps

which are close to approximate fibrations.

THEOREM 1. ILet B be a space which is locally polyhedral, let o be an open
cover of B, and let m 2 5 be an integer. There exists an open cover B of
B so that if M® iz a manifold (M =) and f: M > B is a R-fibration, then

£ is a-close to an approximate fibration p: M > B.

There are two variations of this result which follow from the same proof.
The first assumes that oM # ¢§ and f is already an approximate fibration
over an open set in B which contains £(3M). The conclusion is that the
approximate fibration p: M > B can be chosen to agree with f on oM. The
second variation assumes that flaM: 3M - B is the projection map of a locally
trivial bundle or a block bundle over arbitrarily small simplices. The con-
clusion is that p can be chosen to agree with f on OM.

The proof of Theorem 1, which is given in Section 6, uses a handle lemma
from Section 5 that is established by engulfing and torus geometry. The idea
of the proof is to construct maps fi: M > B which are close to f and which
are B,-fibrations, where {Bi} is a sequence of open covers of B whose mesh
converges to 0. The fi are additionally chosen so that 1lim fi = p: M>B
is defined and is our desired approximate fibration.

In [15] there is constructed ;n example of an approximate fibration
p: M6 > S1 (3M = @) whose fiber is not homotopy equivalent to any finite

complex. Perhaps the following result will be useful in determining all such

fibers (up to homotopy type).

COROLLARY. 4 polyhedron K is homotopy equivalent to the (homotopy) fiber of

1

some approximate fibration p: M* > 8" (mz5 and M = @) if and only if

K X st s homotopy equivalent to some compact m-manifold without boundary.

The following notation will be used throughout this paper. If a 1is an

open cover of Y, thena homotopy ht: X > Y 1is said to be an o-homotopy pro-
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vided that each set {ht(x)l 0 <t <1} 1lies in some element of «a. A proper
map f: X > Y is said to be an a-equivalence if there is a proper map g: Y+ X
and proper homotopies ¢t: gf = idX, et: fg =~ idY such that f¢t: X->Y and
et: Y > Y are a-homotopies. We write this as

f—l

of (@)

o
id and 6 _: fg =~ id,

9. t

t

where f—l(a) denotes the open cover of X defined by f_l(a) = {f—l(U)lllea}.
Finally if Y has a specified metric and € > 0 is given, then we will also
use € to denote the open cover of Y by-balls of diameter < €. This con-
vention means that we have also defined the notions of e-homotopy and e-homotopy
equivalence.

It might be of some interest to point out another application of Theorem 1.
In [7] the following o-Approximation Theorem was established: For every mani-
fold Nm, m 2 5, and open cover o of N, there exists dh open cover B of
N such that if M is a manifold and f: M >N is a B-equivalence which is
a homeomorphism from @M to 0N, then f 1s o-homotopic rel 3M to a homeo-
morphism. Here is another proof of this result based on Theorem 1 above and
Edwards' Approximation Theorem [9]. For simplicity assume that oM = @ = 3N.
First by use of Theorem 1 we may assume that f is an approximate fibration .
Next it easily follows that f is CE, i.e., the inverse image of each point
has property w” in M. Finally we use Edwards' Approximation Theorem to
approximate f by a homeomorphism. One advantage of this proof over the proof
given in [7] is that surgery theory is completely avoided, i.e., we do not need
the fact that any homotopy Ii X Tm—i is a real Ii X Tm_i rel 3.

Let F" be a compact manifold for which the Whitehead group, Wh(F), van-
ishes. We use S(F) to denote the set of equivalence classes of the form
[£f], where f: ME+F is a homotopy equivalence of a compact manifold to F
which is a homeomorphism from 3M to OF. Another such map, f': M' > F, is
defined to be equivalent to £ provided that there exists a homeomorphism

h: M~> M' for which hf' = f. Note that via use of the s-cobordism theorem,
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S(F) 1is just the set of homotopy-topological structures on F rel 3 [17,
p.265]. If T is the n-torus and e: T + T% is any standard finite cover,
then there is a transfer map e#: S(t" x F) > S(T" x F) defined by e#([f]) =

[%], where T comes from the pullback diagram
M
M

We use SO(Tn x F) to denote those elements of S(Tn x F) that are invariant

___—f_>Tan
f

e x id

—_— Tn x F

under any of these transfer maps.
Our metric on euclidean n-space R" is the one derived from the norm
|2)1/2
n .

||x|| = (lel2 + eee + lx In the following statement p will denote

. . n
projection to R .

THEOREM 2. Let n 2 0 be an integer. For every € > 0 there exists a
§>0 so that if f:M+R XF s a p_l(a)—equivalence for which

f|8M: 3M + R™ x 3F 48 a homeomorphism, where Ve 18 a manifold, ' is
as above and m + n = 5, then there ig an element o(f) of SO(Tn x F)

which vanishes if and only 1f £ <is p—l(e)—homotopic to a homeomorphism.

The proof of Theorem 2, which is given in Section 8, is purely geometric
in nature. It uses only engulfing and torus geometry. The utility of this
result is that many times a geometric problem is encountered which gives rise
to a p_l(S)—equivalence £: M> R x F as above; thus an obstruction is en-
countered in SO(Tn x F). In certain cases surgery theory tells us that
SO(Tn x F) vanishes. For example it follows from [17, p.285] that if o

is a K(m, 1) with 7 poly Z and m+ n > 5, then S(Tn x F) = 0. So in
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particular SO(Tn X F) = 0. The following result deals with simply connected

fibers.+

THEOREM 3. If F" <4is a compact simply commected manifold and m + n 2 5,

then SO(Tn x F) s in 1-1 correspondence with the set of homotopy classes
. *
[Fo, BFO, G/ToP, *],
where F 18 the manifold obtained by deleting an interior point of F.

Recall that G/TOP is the homotopy fiber of the natural map of classify-
ing spaces, BTOP > BG. It is an H-space and the functor X » [X; G/TOP] is
a contravariant functor to abelian groups. The proof of Theorem 3, which is
given in Section 9, uses the surgery exact sequence [17, p.269].

Combining Theorem 3 with the remarks made above about fibers F which are
K(m, 1)'s we have the following corollary. It is used in Appendix 2 to show

that locally homotopically unknotted embeddings are locally flat.
COROLLARY. If F is a sphere, then S_(T" x F) = 0.

Here is a generalization of the result of [4] on approximating maps into

bundles by homeomorphisms.

THEOREM 4. Let B" be a manifold, let o be an open cover of B, and let
m+n 25 bean integer. There existg an open cover B of B so that if
Vil 18 a manifold, p: B, s a fiber bundle with fiber a compact mani-
fold F, and £: M+ E 1is a p_l(B)—equivaZence whech is a homeomorphism from
oM to OJE, then f 1is ‘p_l(u)—homotopic (rel 3M) to a homeomorphism provided

that So(Tl x 19 x F) =0, for i+ j = n.

The idea of the proof (see Section 10) is to locally work through a handle

decomposition of B. Starting with the handles of index 0 we use Theorem 2

+The author is indebted to L. C. Siebenmann for providing him with this
computation.
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as a handle lemma to deform £ to a map which is a homeomorphism over these
handles. Then we inductively continue through the handles of positive index.

From the remarks following Theorem 2 we conclude that Theorem 4 1is true
if F idis a K(m, 1) with ™ poly Z. We also point out that Theorem 4 is true
if we merely assume that SO(Ti x Ij x F) =0 for j ranging through the in-
dices of a given handle decomposition of B. TFor exémple if B 1is a sphere,
it has a handle decomposition with handles of only index 0 and dim B, so we
only need SO(Ti X Ij xF) =0 for j=0 and j = dim B. This is somewhat
different from the procedure of [7] or [20], in which the degree of the approxi-
mation depended on the size of the handles in the target.

Finally we mention that the techniques of this paper have important appli-
cations to the homotopy detection of local flatness and to the homotopy detection
of those maps which are close to block bundle maps. More specifically in
Appendix 2 we sketch a proof that a locally homotopically unknotted manifold
pair is locally flat. This is essentially what appears in [5], but now we
capture some extra’dimensions that eluded us at the time. Results of this
type are not new any longer and we refer the reader to Appendix 2 for a fuller
account of the literature on the subject. In Appendix 3 we show how the approx-
imation techniques of this paper can be used to prove that approximate fibra-
tions can be approximated by block bundles provided that a nl—condition on
the fiber is satisfied. Again this is not a new result--it having been done
recently by Quinn [18].

The key idea in this paper is an engulfing trick, which might best be
described as a "shuffle." To acquaint the reader immediately with this we
sketch a quick proof of the a-Approximation Theorem of [7]. This is done in
Appendix 1 and we recommend that it be read first before anything else is

attempted.



2. PRELIMINARIES

In this section we will introduce some additional notation and remind
the reader of some well-known results from the literature which will be used

throughout this paper.

R n . :
Recall from Section 1 that R~ denotes euclidean n-space, i.e., R® =

R x »++ x R (n times). In R® we consider n-cells of the form B: = [~r, r]n.

We use Sl to denote the set of complex numbers of absolute value 1, and the

n-torus is T" = Sl X Sl X eese X Sl. We always let I = [0, 1], and the stan-

dard n-cell is I" = [0, 1] x =+« x [0, 1].
Expanding on the definition of an a-equivalence which was given in Section
1 let f: X > Y be proper, let C c Y be closed, and let® o be an open cover

of Y. Then f 1is said to be an G-equivalence over C if there is a proper

-1
- o,
map g: C > X and proper homotopies ¢t: gf|f l(C) G id, Gt: fg = id.

This means that ¢t: f_l(C) + X and St: C > Y are proper homotopies such
that ¢o = id, ¢1 is the inclusion f—l(C)c¥ X, ¢t is an f_l(a)-homotopy,

60 = id, 61 is the inclusion C G Y, and St is an a-homotopy. Note that

if Cc Gc Y, where C is closed and G 1is open, then for all sufficiently

fine open covers o of Y, any a-equivalence f: X > Y restricts to an

-1

(anG)-equivalence over C, f£lf (G): f—l(G) + G, (Here a n G = {Un G|U € al.

We write "f = g over C" to mean that f—l(C) = g-l(C) and f =g on
f—l(C). In general we say that f has property P over C whenever
flf_l(C) has property P. In some instances when the meaning is clear we will

simply write f when the restriction f| is intended. Finally, a homotopy
£: X > Y is said to be an a-homotopy over C < Y if ft]fgl(c): f;l(c) +Y
is an o~homotopy.

The following result tells us how to detect a-equivalences locally. It is

established in [6].
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PROPOSITION 2.1. Let B be a space and let Yy be an open cover of B. For
every open cover o of B there exists an open cover B of B so that if

f: X+ Y and p: Y > B are proper maps such that X, Y are ANRs and f 1is a
p-l(B)—equivaZence over the closure of each element of Y, them f 1is a

P_l(a)—equivalence.

REMARKS. 1. There is a similarly-worded local version of this result whose con-
clusion states that f is a p_l(u)—equivalence over some closed set C c Y.

2. The above result is also true if we merely assume that X, Y are separable
metric ANRs and f, p are no longer necessarily proper. For this to make sense
we also have to drop the requirement that the map g and homotopies ¢_, ©

t t

of the definition are proper.

We now expand on the definition of an w-fibration which was given in
Section 1. Let f: X > Y be proper, et C < Y be closed, and let o be
an open cover of Y. Then f is said to be an a~fibration over € if for all
maps F: Z x I > C ’énd %o: Z > X for which f%o = FO, there is a map
G: Z x I - X such that GO = Fo and fG is a-close to F. Note that if
f: X > Y is an a-fibration and C c G c Y, where C 1is closed and G is open,
then the restriction flf—l(G): f-l(G) + G is an (anG)-fibration over ¢
provided that o is sufficiently fine.

Here is an analogue of Proposition 2.1 for a~fibrations. Again see [6]

for a proof.

PROPOSITION 2.2. Let B be an ANR and let Yy be an open cover of B. For
every open cover o of B there exists an open cover B of B so that if X
ig an ANR and f: X > B 1s a B-fibration over the closure of each element of

Y, then £ is an a-fibration.

REMARK. As in Proposition 2.1 there is a similarly-worded local version of this
result whose conclusion states that f is an oa-fibration over some closed set

C < B.
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The following result gives us another point of view from which we can

recognize p_l(a)—equivalences. See [6] for a proof.

PROPOSITION 2.3. Let B be an ANR and let o be an open cover of B. There
exists an open cover B of B so that if p: E~+ B 18 a Hurewica fibration,
X 18 arbitrary, and f: X > E is a homotopy equivalence for which pf: X+ B

18 a B-fibration, then f 4is a p—l(u)—equivalence.



3. ENGULFING

In this section we will establish Theorem 3.6, which is the main engulfing
result which will be needed in the sequel. It is deduced rather formally from
an engulfing result of [22] which is statedbelow in Lemma 3.1. We will first
need a definition. A polyh;dron P in a manifold M is said to be locally
polyhedral in M 1if for each x ¢ P there is an open set Uc M of x and
a triangulation of U as a PL manifold so that U n P is a subpolyhedron of

this triangulation. Here is Proposition 2.3 of [22].

LEMMA 3.1. Let M" be a manifold, M =@, let p 20 be an integer, let
P ¢ M be a polyhedron which is closed and locally polyhedral in M, dim P <
m~ 3, and let P P be a subpolyhedron so that Q =P - P 18 compact and
dim Q € p. Also Let +U_c U, c ***» c U and M <M c ++e cM =M be

o 1 P [¢] 1 P
non-null open subsets of M such that P c M, P U, U <M, and such
that for 0 < i< p=-1, all maps (K, L) ~ M, u.) of a finite simplicial
patr of dimension < p - i are homotopic in (Mi+1’ Ui) to a map (K, L) »>

u Then there exists an isotopy, with compact support, of id, to

Wigs Uy
a homeomorphism h: M+ M for which "P c h(Up).

We now derive an easy consequence of Lemma 3.1 which will be more directly
useful to us. For notation let wu, v: [0, ©) > (-2, 2) ¢ R be maps so that

we have v(s) < u(s), for all s = 2.

We also use T(u) and T(v) to denote the graphs under u and v. That is,

T(u) and T(v) are the subsets of [0, ») x R defined by

T(w) = {(s, t)] -~ = <t £ u(s)},

{(s, B)] - = <t <v(s)}.

T'(v)

10
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LEMMA 3.2. For each manifold Mm, M = @, there extists an € = €(m) > 0O
so that if f: M > [0, ©) X R 18 an e-fibration over [0, 4] % [-4, 4]}, and

P c M 18 a polyhedron which is closed and lokally polyhedral in M, dim P <

m - 3, then there exists an isotopy, which is supported on f_l([0,3] x [-3,3]),
of 1dy to a homeomorphism h: M + M which satisfies

P L) e e (@),

Proof. Without loss of generality assume that P ¢ f_l(T(v)). Choose a closed
subpolyhedron Po of P in f_l([2, ©) X R) so that P n f—l([2.5, ®) X R)

lies in Po' Choose continuous functions u [0, ©) » (-2, 2),

i:

v,: [0, ®») > (-2, 2), 0 < i < m, so that

e

(1) v(s) < uo(s) < vo(s) < see < um(s) < vm(s), for all ¢ 2 2,
(2) u < uy < see < w = u,
B ve<v <<y,

(4) u < vy, for all i.

It should be pointed out that the choice of the uy and vy depend only
on u and v, and the € must be calculated in terms of these choices. We
are assuming that f 1is an e~fibration over [0, 4] x [-4, 4], thus for each
i there is a homotopy of the identity on (f_l(P(vi)), f-l(F(ui))) to a map-

ping into (f-l(F(u f_l(T(ui))), with the homotopy taking place in

)),
i+l
(f_l(F(vi+1)), f_l(P(ui))). Also we have PO c f_l(F(uo)). Now a quick applij

cation of Lemma 3.1 gives our desired homeomorphism h: M > M. 0

The following result is a generalization of Lemma 3.2. 1Its proof is based
on the proof of Theorem 2.1 of [22]. For notation we still have the maps

u, v: [0, ©) + (-2, 2) of Lemma 3.2.

LEMMA 3.3. For each manifold M®, oM =@ and m 2 5, there exists an € =
ge(m) >0 so that if f£f: M+ [0, ) x R is an e-fibration over [0,4] x [-4,4],
then there is an igotopy, which is supported on f_l([O, 3] x [-3, 3D, of

idy, to a homeomorphism h: M+ M which satisfies £l n(e ).
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Proof. Choose maps v,, v, : [0, ®) > (-2, 2) so that v < v, < v, and

1’ "2 1 2
VZ(S) < u(s) for all s = 2. 1If 1"m—3 € M is a polyhedron which is closed

and locally polyhedral, then by Lemma 3.2 there is a homeomorphism h M+M

1
which is supported on f_l([O, 2] x [-2, 2]) and for which P n f_l(T(vz))
lies in hl(f_l(F(u)). If Q2 c M- P 1is a polyhedron which is closed and

locally polyhedral in M, then Lemma 3.2 again provides us with a homeomor-

' phism hz: M > M which is supported on f—l(F(vl) n ([0, 3] x [~3, 3])) and
for which h,(Q n £7([0, 2.1} x [-2.1, ®)) lies in £ “(I(¥)).
According to Proposition 2.7 of [22] we can choose P and Q to be

"topological dual skeleta" in M. This means that for every § > 0 we can

choose P and Q so that if C <M - P 1is a compactum, then there are homeo-
morphisms of M, with compact support and which are 8-close to idM, which
take C as close to Q as we want. The compactum that we have in mind is

the closure of

3 -1 -1

‘ hy (M - £ (T £ 7(T(v,)),
3.

which we call C. Let h3: M > M be a homeomorphism which is supported on

fhl([O, 3] x [-3, 3]), which is &-close to idM, and which takes C close to

Q. It is easy to see that with an appropriate choice of §, h = h2h3hl ful-

fills our requirements. |

We now deduce the following 'radial" engulfing result from Lemma 3.3. For
g

notation B will be a finite-dimensional polyhedron which will act as a para-
: meter space. Also B will have the metric topology determined by a fixed tri-
angulation, and B X R will have the metric which is the product of the metric

on B with the standard metric on R.

LEMMA 3.4. For every integer m 2 5 and € > 0 there exists a § >0 so
that if M is a manifold, M =@, and f: M+ B X R 1s a 6-fibration over
B x [-4, 4], then there exists a homeomorphism h: M ~ M which is supported

on f_l(B x [-3, 3]) and which satisfies f_l(B x (- o, 1]) < hf‘l(B x (- @, 0)).
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Moreover if Py = proj: B X R > B, then there is an isotopy ht: idM =~ h which
is supported on f_l(B x [-3, 3]1) and which is a (pr)_l(e)—homotopy.

Proof. Choose a fine triangulation of B whose mesh depends on €. Once this
is done the & 1is calculated so that the following constructions make sense.
For each vertex v of B let Cv be a small closed neighborhood of v and
let Ev be an open set containing Cv so that the Ev's are pairwise-disjoint.

We are going to apply Lemma 3.3 to each composition

(g x id)f: f"l(EV x R) 4 Ev x R&[O, ©) X R,
where q: Ev -+ [0, ®) is a proper map. To see how Lemma 3.3 applies first
note that we may take q: Ev x [0, ©) to be a proper retraction. We can choose
8 small enough so that f: f_l(Ev X R) = Ev x R is a 6-fibration over
a 110, 4] x [=4, 41), yet (q x id)f: £1(@, x B + [0, =) x R might not be a
S~-fibration over [0, 4] x [-4, 4]. However in the proof of Lemma 3.3 we did
not need the full strength of the e~1lifting property over [0, 4] x [-4, 4].
We only needed the e~lifting property for homotopies which move only in the
R-direction. It is easy to see that this is true for the map (q x id)f:
£ 1T xR) T xR. Now applying Lemma 3.3 to (g x id)f: £ (T, x B) »

~

Cv x R we obtain a homeomorphism h(v): M + M which is supported on

-1

£71(C, * -2, 2]) and for which f"l(cv x (=@, 1.5]) h(v)f‘l(Ev x (= ®, 0)).

The h(v)'s then compose to yield a homeomorphism h®: M + M such that

£hue) x (- =, 1.5]) € n°F (B * (- =, O)).

.

This completes the first step of the construction.
The effect of h® was to deal with the O-skeleton. The next step is to
show how to deal with the l-skeleton. Let O be a l-simplex in B with ver-

tices Vl’ v2, and let C0 be a closed set containing the closure of

o - (Cv U Cv ) in its interior. Let Ec be a slightly larger open set con-
1 2
taining CO' This can be done so that CO'S are pairwise disjoint and so that

Eo lies in a small neighborhood of . Again using Lemma 3.3 there is a
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homeomorphism h(c): M + M which is supported on f—l(E0 x [~2.5, 2.5]) and

for which £ 1((C;UIC_a (C! uc!)]) x (- ®, 1.4]) lies in
g Vl V2

(@£ E x (-, =2)) u (€, n (c, uc, ) x (==, 1.5)],
1 2

where C' and C’ are slightly smaller neighborhoods of v, and v.,, res-
Vi vy ’ 1 2

pectively. Do this for each ¢ and then compose the h(o)'s to obtain a homeo-

morphism hl: M > M. We note that hlhof_l(B X (= «, 0)) contains

f—l(B1 X (- o, 1.4]), where Bl is the l—skeieton of B. 1If we continue to

work through the skeleta of B in this manner we eventually obtain our desired

homeomorphism h: M -+ M. The (pr)_l(e)-homotopy ht: id * h d4s clear from

the construction because diam(A) << €, for all simplices A in the triangu-

lation of B. i}

We now generalize Lemma 3.4. For notation B will still be a finite di-
mensional polyhedron which acts as a parameter space and 6: R > R will be a

homeomorphism which,is supported on [-1, 11].

LEMMA 3.5. For every integer m =5 and € > 0 there exists a 8 > 0 so that
if M is a manifold, oM =@, and f: M-+ B X R Z8 a 8-fibration over

B X [~4, 4], then there exists a homeomorphism &: M~ M which is supported on
£ x [-2, 21) and for which  d(£8, (idg x 8)f) < €. Moreover we can
construct 8 so that there is a (éBf)-l(e)—isotopy of 8 to id which is

1

supported on £ (B x {-2, 2]), where pg = proj: B x R > B.

Proof. Choose a fine partition of [~1, 1], -1 =x < x, < *s» < x <x =1
[) 1 n-1 n
By stacking together the homeomorphisms of Lemma 3.4 we will construct a homeo-

morphism 8: M> M which is supported on f_l(B x [~2, 2]), which satisfies

d(prg, pr) < €/2, and which also satisfies
-1 x.-1 -1
£B x (- =, 00 DD € BB x (-0, x,1) € £ x (==, 6(x) D),

n - 1. If the support of 5 is sufficiently close to

IA
e
IA

for 1



