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Preface

In the present world, where information is taking the dominant role in all
branches of science, engineering and economy, there is an ever-increasing
demand for data. However, real data originating from experiments are not always
at hand. What is more, provision of data in this way only is rather time-consum-
ing, not always economical or feasible, and in some cases this method of data
provision could even retard the actual progress of process technology or equip-
ment development.

Fluids form common substrates in many chemical engineering operations and
processes. Fluid mixtures result as the outcome of chemical reactions and such
mixtures must be efficiently separated into final products. To design chemical
reactors and separation equipment efficiently, we must have data on fluid prop-
erties in a wide range of temperatures and pressures.

At the time of writing this preface, eighteen years have elapsed since the appear-
ance of the first book in Czech (1961) on the possibilities of predicting physical
properties of fluids using the corresponding state methods (B 17). At that time,
we encountered third parameters for the first time, and relatively complicated
relations for mixtures were formulated. A review of basic publications on this
theme covered something of the order of one hundred papers.

The present manual contains complicated calculation procedures, not solvable
without the use of computers, based on many sophisticated equations of state
having defined applications, which have been devised since. The number of ref-
erences is also a rough measure of the extent of increase of the subject treated.

We are presenting this selection of computation methods, which must necessarily
be incomplete, as a manual of recommended calculation procedures enabling
the prediction of fluid properties using methods based on the macroscopic theorem
of corresponding states, i.e. on critical properties and on third parameters. Data
and relationships have been converted to SI units.

We wish to express our thanks to Dr. G. B. Lawson of Unilever, Colworth
House, Dr. G. A. Davies of the Department of Chemical Engineering, University
of Manchester Institute of Science and Technology, and to Dr. J. D. Jenkins of
the Department of Chemical Engineering, University of Aston, Birmingham,
U. K., for their assistance in preparing this English translation. Our thanks are
due to all who supplied extensive material in the form of reprints and communic-



ations, especially for the bulk of work developed in the institutions of Profes-
sor G. Thodos and Professor D. S. Viswanath.

Prague, September 1979 ZDENEK STERBACEK
BOHUSLAV BISKUP
PETR TAUSK
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Chapter 1

INTRODUCTION

Definition of the Critical State

Most physical systems exert characteristic phenomena when approaching some
defined critical point, and such phenomena are termed critical. Many critical
points exist, as given in (S7). The most familiar of this entire set is the critical
point for the transition of the liquid phase into vapour and vice versa.

The general definition of the critical state of a pure substance may be stated as
follows: the critical point is a limiting point marking the disappearance of a defined
state. It defines the maximum attainable temperature on the coexistence curve
of the states, and the coexistence curve encloses the region in which liquid and
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Fig. 1.1 Shape of isotherms in the critical region.

vapour phases coexist. Density at this point is termed critical density and denoted
by g.. Isotherms are horizontal within the coexistence curve, i.e. the coefficient
of compressibility is infinite (cf. Fig. 1.1). In this region, gravity forces alone
suffice to bring about substantial density gradients. _

Throughout this work, critical properties defined in this way for the critical
point between the vapour and liquid phases will be used as the basic parameters
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for determining properties of materials which are important in the chemical process
industries. Such properties are divided into the state, transport and thermodynamic
categories, depending on their origin and/or application. Although substantial
efforts have been made to determine values experimentally, data are incomplete
and we still need methods enabling their prediction or generalisation for many
chemical engineering calculations. The theorem of correspending states, based
on the critical constants, is one way. To distinguish this theorem from the theorem
based on molecular properties, we denote it as the macroscopic theorem of cor-
responding states (TCS).

The purpose of this work is to present in the form of a manual, rather than as a
monograph, a survey of methods available to practising engineers for the predic-
tion of basic chemical engineering properties using this theorem. We are fully
aware of its limitations, but we do consider it to be a valuable working tool for
several years to come. The work makes no attempt to review the physicochemical
background of the theorem, such a discussion being outside the scope of this
treatment.

To summarize, let us define the basic three critical constants in the critical
region.

Critical temperature T, is the temperature at which the molecular kinetic energy
of the translational motion of the molecules equals the maximum of the potential
energy of attraction. This is the maximum temperature at which the respective
gas can be liquified, no matter how great a pressure is applied.

Critical pressure p, is the pressure necessary to liquify the gas at its critical
state temperature.

Critical volume v, is the volume occupied by a mole of the material in the critical
(at T, and p,). The following relation is valid between critical volume and density

1:[ or 0. = v " (1.1.1)

Cc =

c

where M is the molecular mass (g. mol™"). In the second case, g, is expressed

in mol . cm ™3,



Chapter 2

FUNDAMENTALS

2.1 Reduced equations of state

The calculation equations and relations given subsequently are based on the
so-called macroscopic theorem of corresponding states which has been basically
defined by van der Waals (W1). According to his definition, substances at equal
reduced temperature and pressure have equal reduced volume. The quantities
used in this case for the reduction of the equation of state (for making the para-
meters dimensionless) are phenomenological macroscopic parameters, viz. the
critical temperature, pressure or volume. This distinguishes the macroscopic
theorem from the statistical-mechanical theorem, where the parameters of the
Lennard-Jones 12 —6 potential are generally used for reduction.

There is an empirical relationship between both theorems, and we shall make
use of it without going any deeper into the details. The analogies are discussed
in (B25, F7, H4, 14, S29) and (S30). For our purpose we use the van der Waals
definition in the form

z =f(T,,p,) .11

where T, = T|T,, p, = p/p,. This is the simplest form of the 2-parameter reduced
equation of state which can be used under several restrictions to describe the
mutual relationship between pressure, volume and temperature (p—v-T) of
an ideal fluid.

This relation can be actually formulated in two ways: (a) by methods based
on generalized equations of state, based, for example, on the theorem of correspond-
ing states (TCS); (b) by means of the equations of state. Up to the present time,
about hundred equations of state are known, containing 2 to 40 parameters,
coefficients or constants. Both the parameters and the constants follow generally
from experimental data and are therefore characteristic of the compounds for
which they have been determined. On the other hand, practically all are related
to the critical constants. Let us take as an example the well known van der Waals
equation of state

(p + %)(V— b) = RT @.1.2)
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The coefficients @ and b, are dependent on the given substance. Introducing
the relations which follow from the condition of existence of an inflexion point
at the critical point;

op 62p>
il = ='0 (2.1.3)
(61) )T:TC (002 T=T.

we obtain:
a = 2TR*T2/64p, (2.1.3a)
b = RT,/8p, ‘ (2.1.3b)
and a formal relation for the universal gas constant
R = 8p.v, /3T, (2.1.3¢)
we get
3
Prib - J 30, 1) = 8T, (2.1.9)
Ul’

On comparing Eqs. (2.1.2) and (2.1.4) we see that the coefficients a and b,
previously dependent on the specific substance, have been eliminated from the
relation and substituted by more easily accessible and more general constants
T., p., v.. This form of the equation of state is called the reduced or generalized
Jorm. Its main advantage is its general validity for more than a single substance.
As shown by Othmer (04), there is a defined relationship between these relations
and the equations of state reduced by means of the properties of a reference
substance, which can be regarded as a special form of the TCS.

Equations of state with 2 parameters

The van der Waals equation which has been already discussed is a classical
example of a 2-parameter equation of state. On an intuitive basis, separate cor-
rection terms have been introduced into the simple equation of state of an ideal
gas accounting for the repulsive and attractive forces between molecules, After
some trend towards equations of state with several parameters in the past 10—15
years, a revival of interest in the simpler and physically better understandable
equations of state has been observed lately (R19). It is, however, generally known,
that the simple equations of state do not explain adequately the p—v—T rela-
tionship for fluids at high pressures, diluted quantum gases and fluids with pro-
nounced polar, dipole or multipole effects. The conditions of validity of these
simple equations of state are as follows:

(1) spherical or symmetrical shape of molecules;

(ii) sufficiently high temperatures, ensuring the validity of the laws of the

classical statistical mechanics;
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(iii) the potential energy must be a general function of the partition distance
and of both characteristic parameters;

(iv) intermolecular degrees of freedom must be independent of the molecular
volume.

Basic equations of state of the 2-parameter TCS

The main advantage of the van der Waals equation of state (Eq. 2.1.2) or (2.1.4)
lies in its simplicity. It describes, with reasonable conformity to experimental data,
the isotherms up to p, = 1.0 for slightly supercritical temperatures. When the
temperature is increased to approximately 7, = 2.2, the deviations from measured
values are still acceptable for pressures up to p, = 8.0. The equation can be used
below the critical point for describing the behaviour of gases, but not of liquids.

The Berthelot equation (B12) is an early modification of the van der Waals
equation of state. Temperature is introduced into the term correcting for the
forces of attraction:

: <p, + ~3—2-> (Bv,. — 1) = 8T, (2.1.5)
Tv;
Shah and Thodos (S10) compared the 2-parameter equations of state usingp —v— 7'
data for argon. It followed that a worse fit of experimental data is obtained when
using Eq. (2.1.5) instead of (2.1.4).
The Dieterici equation (D6) is an empirical exponential equation of state given
by:

b %%3—(12))_ exp (—7%> 2.1.6)
The isotherms calculated from Eq. (2.1 .6) are by no means better than those obtain-
ed from Eq. (2.1.4) in the high pressure region; in the low pressure region, values
from Eq. (2.1.4) are definitely better. The differences increase with increasing
pressure. Eq. (2.1.6) cannot be used for the liquid phase as well, owing to its
empirical nature. At volumes lower than b, the calculated pressures become ne-
gative, which is naturally a physical nonsense.

The Redlich and Kwong (RK) equation (R8) is one of the most frequently used
equations of state employing 2 parameters (T, and p,) only.

3.8464
Pt g g, ~ 0.26) = 20007 2817

< Ty *v(o, + 0.26))( : ? i1
According to the authors of the equation, it gives good results in the supercritical
region at broad range of pressures. The obvious conclusion resulting from an
inspection of the equation is that at high pressures the volume is approximately
constant and equal to 0.26v, and independent of temperature. This equation has
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been constructed to meet the condition & = 0.26v, and it gives more probable
values at higher pressures.

The constants a and b in the RK equation of state in non-reduced form are
functions of temperature, and reduced relations have been suggested to formul-
ate this dependence:

M a _ ap, o

L @x  0.043316R*T3S

=1-0.00863T? — 48.1(—%—0922—> - 31.Oexp<—(i;—0:)2—5)i—) (2.1.8a)
+ 0.125(—%) (2.1.8b)

As can be seen from Eq. (2.1.8a, b), the constants in the original RK equation
follow from

a=QRT: p.; b=QRT,|p,

and Q, = 0.043316, Q, = 0.0867. As shown recently by Simonet and Beher (S8),
the constants are a function of the temperature, in agreement with Egs. (2.1.8a, b)
and of a third parameter w (cf. p. 24). Using experimental data on n-alkanes
(nc e <1, 16)) iso-alkanes (nc = 4,5) benzene, SO,, H,S, CO,, N, and cyclo-
hexane, they obtained:

Q,

Qﬂb 7 Qb

=00 + R’ (2.1.8¢c)

where

Q) = 0.51307

QW) = —0.821 66 +0.8934T, !

2 =0+ |T,-11+07|T, -1/
Q9 = 0.0826 — 0.0122w

QY = 0.0220 — 0.0127w

Q) = —0.0072 — 0.029 05w

and mean errors amount to 0.94 —8.379%.
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