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Part I — Lie Algebras

Introduction

The main general theorems on Lie Algebras are covered, roughly the content
of Bourbaki’s Chapter 1.

I have added some results on free Lie algebras, which are useful, both
for Lie’s theory itself (Campbell-Hausdorff formula) and for applications to
pro-p-groups.

Lack of time prevented me from including the more precise theory of
semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a
last Chapter, the typical case of sl,.

This part has been written with the help of F. Raggi and J. Tate. I want
to thank them, and also Sue Golan, who did the typing for both parts.

Jean-Pierre Serre

Harvard, Fall 1964



Chapter I. Lie Algebras: Definition and Examples

Let k be a commutative ring with unit element, and let A be a k-module, then
A is said to be a k-algebra if there is given a k-bilinear map A x A — A4 (i.e.,
a k-homomorphism A ®r A — A).

As usual we may define left, right and two-sided ideals and therefore quo-
tients.

Definition 1. A Lie algebra over k is an algebra with the following properties:

1). The map A ®x A — A admits a factorization
A®rA—- N4> A

i.e., if we denote the image of (z,y) under this map by [z, y] then the condition
becomes

[z,2] =0 for all z € k.
2). [[z,y], 2] + [y, 2], ] + [[z, z],y] = 0 (Jacobi’s identity)
The condition 1) implies [z,y] = —[y, z].
Ezamples. (1) Let k be a complete field with respect to an absolute value, let
G be an analytic group over k, and let g be the set of tangent vectors to G at

the origin. There is a natural structure of Lie algebra on g.
(For an algebraic analogue of this, see example (v) below.)

(i1) Let g be any k-module. Define [z,y] = 0 for all z,y € g. Such a g is
called a commutative Lie algebra.

(ii") If in the preceding example we take g b A %g and define

[z,y] =z Ay
[z,yAz]=0
[xAy,2z] =0

[zAy,zAt]=0

for all z,y,z2,t € g, then g A ?g is a Lie algebra.

(iii) Let A be an associative algebra over k and define [z,y] = zy — yz,
z,y € A. Clearly A with this product satisfies the axioms 1) and 2).

Definition 2. Let A be an algebra over k. A derivation D : A — A is a
k-linear map with the property D(z -y) = Dz -y + = - Dy.

(iv) The set Der(A) of all derivations of an algebra A is a Lie algebra with
the product [D,D'] = DD' — D'D.
We prove it by computation:
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(D.D')(z -y) = DD'(z -y) — D'D(z - )
=D(D'z-y+az-D'y)—D'(Dz-y+z-Dy)
=DD'z-y+ D'z-Dy+ Dz -D'y+z-DD'y

—D'Dx-y—Dz-D'y—D'z-Dy—x-D'Dy
=DD'z-y+x-DD'y—D'Dx-y—=x-D'Dy
=[D,D'|lz-y+z-[D,D'y.

Theorem 3. Let g be a Lie algebra. For any = € g define a mapadz : g — g
by adz(y) = [z,y], then:

1) adz s a derivation of g.

2) The map = — adz is a Lie homomorphism of g into Der(g).

Proof.
adz[y, 2] = [z, [y, 2]]
—ly, [z, 2]] = [z, [z, ]
= [[z,9], 2] + [y, [z, ]]
= [ad2(y), 2] + [y,ad z(2)] ,

hence, 1) is equivalent to the Jacobi identity. Now

ad[z,y|(z) = [[z, ], 2]
= —(ly, 2], 2] = [[2, 2], ¥]
= [;ZT,[U,ZH - [y= [Ivz]]

—adrady(z) —adyadz(z)
= [ad z,ad y](z) ,

hence 2) is also equivalent to the Jacobi identity.

(v) The Lie algebra of an algebraic matriz group.

Let k be a commutative ring and let A = M,,(k) be the algebra of n x n-
matrices over k.

Given a set of polynomials Py (Xij), 1 <1,j < n,azero of (Py) is a matrix
x = (zi;) such that z;; € k, Py(z;;) = 0 for all .

Let G(k) denote the set of zeroes of (Py) in A* = GL,(k). If k' is any

associative, commutative k-algebra we have analogously G(k') C M, (k').

Definition 4. The set (P,) defines an algebraic group over k if G(k') is a
subgroup of GL, (k") for all associative, commutative k-algebras k'.

The orthogonal group is an example of an algebraic group (equation:
X - X =1, where 'X denotes the transpose of X).

Now, let k' be the k-algebra which is free over k with basis {1,¢} where
€2 =0, ie., k' = k[e].
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Theorem 5. Let g be the set of matrices X € M, (k) such that
14+ ¢eX € G(k[e]) .
Then g 1s a Lie subalgebra of M,(k).
We have to prove that X,Y € g implies A X + uY € g, if A\, € k and

XY -YXeg.
To prove that, note first that

Pil+eX)=0foralla «> Xecg
and, since €2 = 0, we have
Pa(l +eX) = Pa(1) + dPa(1)eX .
But 1€ G(k), .. Py(1) = 0 therefore
Pa(1+¢X) = dPo(1)eX .

Hence, g is a submodule of M, (k).

We introduce now an auxiliary algebra k' given by k' = k[e, ', ce'] where
e?=¢? =0and e'e =e€', ie, k" = kle] @k k[e'].

Let X,Y € g, so we have

g =14+¢eX € G(kle]) C G(k")
g =1+4+¢Y € G(k[']) C G(k")

99' =(14+eX)(1+€'Y)=14eX +'Y 4+’ XY
gg=14+eX +e'Y +e'YVX.
Write Z = [X,Y]; we have
99' =9'9(1 +ec'2).
Since gg',g'g € G(k"), it follows that
1+ec'Z € G(K") .
But the subalgebra k[ec’] of k" may be identified with k[e]. It then follows
that 1 +eZ € G(k[e]), hence Z € g, q.e.d.

Ezample. The Lie algebra of the orthogonal group is the set of matrices X
such that (1 +eX)(1 +¢e('X))=1,1e, X +X =0.

(vi) Construction of Lie algebras from known ones.
a) Let g be a Lie algebra and let J C g an ideal, then g/J is a Lie algebra.
b) Let (g:)ier be a family of Lie algebras, then Hx‘el @ is a Lie algebra.

c) Suppose g is a Lie algebra, a C g is an ideal and b is a subalgebra of
g, then g is called a semidirect product of b by a if the natural map g — g/a
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induces an isomorphism b —> g/a. If so, and if z € b, then ad ¢ maps a into
a so that adgq z € Der(a), i.e., we have a Lie homomorphism 6 : b — Der(a).

Theorem 6. The structure of g 1s determined by a, b and 6, and these can
be given arbitrarily.

Proof. Since g is the direct sum of a and b as a k-module and since multipli-
cation is bilinear and anticommutative we have to consider the product [z,y]
in the following three cases:

T,yca
r,y€b
z€b, yeca.

In the first case [z,y] is given in a, in the second one [z,y] is given in b
and in the last one we have

[z,y] =ada(y) = 6(z)y .
Conversely, given the Lie algebras a and b and a Lie homomorphism
6:b — Der(a)

we can construct a Lie algebra g which is a semidirect product of b by a in
such a way that 6(z) = adg @, where ad, 2 is the restriction to a of adg z, for
z € b. One has to check that the Jacobi’s identity

J(z,y,2) = [z,[y,2]] + [y, [z, 2]] + [z, [2,9]] = O
holds. There are essentially four cases to be considered:

(a) z,y,z € a — then J(z,y,2) = 0 because a is a Lie algebra.

(b)z,y€a,z€b
() z€ayzeb — J(r,y2) =0 < 6(ly,2]) = 6(y)8(=) — 6(=)6(y).
(d) z,y,z €b

J(z,y,z) =0 < 6(z) is a derivation of a.

|

J(z,y,2z) = 0 because b is a Lie algebra.



Chapter II. Filtered Groups and Lie Algebras

1. Formulae on commutators

Let G be a group and let z,y,z € G. We will use the following notations:

(i) z¥ = y~'ay, hence the map G — G given by z +— z¥ is an automor-
phism of G, and we have the relation (z¥)* = z¥=.

(i1) (z,y) = 27y~ lzy which is called the commutator of z and y.

Proposition 1.1. We have the identities:
(1) zy = ya¥ =yz(z,y), z¥ = 2(z,y), (z,2) =1, (v,2) = (z,y)7".
(2) (z,yz) = (z,2)(z,y)*.
(2') (zy,2) = (z,2)¥(y, 2)-
(3) (=¥, (y,2))(y*, (2, 7)) (2%, (z,y)) = 1.

Proof. (1) is trivial.
(2) From (i) and (1) we have
z(z,yz) =z¥°
= )"
= [z(z,y))?
=z*(z,y)* = 2(z,2)(z,y)*
and therefore (z,yz) = (z,z)(z,y)*.

(2') zy(zy,z) = (zy)* = 27y~
= z(z,2)y(y, 2)
= zy(z,2)¥(y, 2)

and therefore (zy,z) = (z,2)Y(y, 2).
(3) (2%, (y,2)) =y a7 yz Ty ayy Ty T 2Ty
= Ly~ lgg Tty

yz 'y zxz_]yz.

Put
u = z;rz"lyz

v = ;zyr._]zx

w = yzy"l.ry

then (z¥,(y,2)) = w™lu.
Analogously (by cyclic permutation)
(5, (2,2)) = u~lv

(=%, (2,9)) = v "w .
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Hence (¥, (y, 2))(y%, (z,2))(2%,(z,y)) =1 qed.

Applications:

Let A, B be subgroups of a group G and let (A, B) denote the subgroup
of G generated by the commutators (a,b) for all a € A, b € B.

If A, B, C are normal subgroups of G, then (A4, B) is also normal and we

have the relation
(4,(B,C)) C(B,(C,A))C,(4,B))
which follows from 1.1(3).

2. Filtration on a group

Definition 2.1. A filtration on a group G is a map w : G — R U {400}
satisfying the following axioms:

(1) w(1) = +oo.

(2) w(z) > 0 for all z € G.

(3) w(zy™") 2 inf{w(z), w(y)}-

(4) w((z,y)) > w(z) 4 w(y).

It follows from (3) that w(y~') = w(y). If A € Ry we define

G,\Z{J‘Ele(.l')Z/\}
G:Z{IEG uv(J,‘)>)\}.

The condition (3) shows that G, G} are subgroups of G. Moreover, if z € G,
y € G then z¥ =z (mod GY) which follows from the relation

w((z,y)) 2 A+w(y) > A.

This also proves that G is a normal subgroup of G and since G} = Uusa Gu
it follows that G is also a normal subgroup of G.

The family {G1} (resp. {GT}) is decreasing, i.e., A < p implies Gy D G,
(resp. G D G).

Definition 2.2. For all @ > 0 we define
gra G =G,/Gt and grG = ZgraG .

Proposition 2.3.
1) gr, G i3 an abelian group.

2) If € G4 let T be its image in gr, G; one has (zv) =7 for ally € G.
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3) The map cap : Ga X Gg — Gayp defined by z,y — (z,y) mnduces a
bilinear map Cop: gra G X gryG — gro,5G.

4) The maps ¢q,p can be extended by hinearity to c : grG x grG — grG
and this defines a Lie algebra structure on grG.
Proof. 1) It follows from 2.1(4).

2) It is already proved.

3) Let z,2' € Gq, y,y' € Gg, then (z,y) € Ga4+p and we have to prove
that if u,v € G} then (zu,y) = (z,y) mod Ga++ﬂ, (z,yv) = (z,y) mod G;"+ﬂ.

Using 1.1(2') and (3) we have

(zu,y) = (z,y)* + (v,y) = (z,y)
(z,yv) = (z,v) + (z,y)" = (z,y)
(za',y) = (z,y)* +(2',y) = (z,y) + (z',y)
(z,y'y) = (z,y) + (z,¥')¥ = (z,y) + (z,¥') .

This proves 3).
4) Let £ € gr, G, n € grg G and choose elements ¢ € Ga, ¢ € G such

that £ = €, y = . Then we have (z,y) = ¢4.5(&,7), which we also write [£,n].
Now if £ € gr G then £ = 5 €4 where &4 € gr, G. In order to prove that
[€,€] = 0, it is sufficient to prove that [€,,£s] = 0 and [€4, €8] = —[€8, . Let

To € Go suchthat 7, = £, for all . Then we have [€,,€q] = (Ta,2a) =1 =10,
and

[‘favfﬂ] = ('TCH'Tﬁ) = (xﬂ’za)_l = _[éﬂ»‘fu] :

In order to prove the Jacobi identity J(&,7n,() = 0, since J is trilinear, it
is enough to consider the case { € gr, G, n € gry G and ¢ € gr, G. Now using
the Proposition 1.1(3) we have, for ¢ € G4, y € Gg, z € G such that T = ¢,

y=mn,z= C
J(&m,¢) = (z¥,(y,2))(y?, (z,2))(2%,(z,y)) =1=0

because z¥ =€,y =7, 27 = (. q.e.d.

3. Integral filtrations of a group
Proposition 3.1. For any group G the following two objects are in a one-one
correspondence:

1) Filtrations w: G — R U {400} such that w(G) C NU {+o0}.

2) Decreasing sequences {Gn}nen of subgroups of G such that
(i) Gy =G.
(i) (GnyGm) C Grgm.
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Proof. (1) = (2) is clear.

(2) = (1). Let z € G, then we define a filtration w : G — R U {400} by
w(z) = sup,eq, {n}-

It is clear that w(1) = +oo, w(z) > 0 for all z € G, and w(z) = w(z™?!).

Now let w(z) = n, w(y) = m, i.e, ¢ € Gp, y € G, and z € Gy,
Yy € Gm+1- Suppose n < m, then G, C G, and therefore zy~! € G,, i.e.,

w(zy™) 2 inf{w(z), w(y)) .

In case n = 400 or m = 400, we have obviously this inequality.
Finally the inequality w((z,y)) > w(z) + w(y) follows from (ii). q.e.d.

Ezample. The descending central series of G.

Define Gy = G and by induction G,,+1 = (G, G, ). Then the sequence {G,, }
satisfies the conditions (i)-(ii) of (2) in the Proposition 3.1. Condition (i) is
satisfied by definition, and we will prove (ii) by induction on n in the pair
(GnyGm).

Let first n = 1, then (G, G, ) C G4 by definition. Now suppose n > 1,
then

(Gnv Gm) — ((G, Gn—l )1 Gm) C (G7 (Gn—l ) Gm ))(Gn—l ) (G, Gm))
C (G’ Gn+m—l )(Gn-—l ) Gm+l )
C Gn+m : Gn+m = Gn+1n .
Conversely, if {H,} is a decreasing sequence of subgroups of G which

verifies (2), then H, D G, for all n. The proof of this is also by induction.
Suppose n = 1, then by definition H; = G;. Now if n > 1, we have

H1l+1 2 (Hth) = (Gan) == Gr1+1 .

4. Filtrations in GL(n)

Let k be a field with an ultrametric absolute value |z| = a*(*). Let A, be the
ring of v and let m, be the maximal ideal of 4,, let k(v) = A,/m,,.

Let n be a positive integer and let G be the group of n x n-matrices
with coefficients in A, such that ¢ = 1modm,, ie., if ¢ = (gi;) then
gi; = 6i; mod m,,.

If g € G then g =1+ x where z is a matrix with coefficients in m,.

Clearly G is a group, because it can be described as

G = Ker{ GL(n,A4,) — GL(n,k(v)) } .

Let X € M, (k), X = (zi;), then define v(X) = inf{v(zij;)}.
We can define a map w : G - RU{+o0} by w(g) = v(z), where g = 1+z.

Theorem 4.1. The map w 1s a filtration on G.
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Proof. The conditions w(1) = +o00 and w(g) > 0 for all g € G are obvious.
Let now Gy = {g €G | w(g) > A }. If ay is defined by

0,\={$|2§€k, U(x)Z/\},
the set G is the kernel of the canonical homomorphism
GL(na Av) — GL(na Av/a/\) .

Hence G is a subgroup of G, and this proves condition (3).
To prove condition (4), i.e., (Ga,G,) C Gryp, write g € Gy, h € G, in
the form:
g=1+4+z, h=1+y.

One must check that hg = gh (mod Gx4,). But

hg=1+z+y+yz
gh=14az+y+2ay

and the coefficients of zy and yz belong to ax4,. Hence hg and gh have the
same image in GL(n, A,/axy,), and they are congruent modGx4,, q.e.d.

Exercises

1. Determine the Lie algebra grG.
2. Prove that G =1lim G/G if k is complete.



Chapter III. Universal Algebra of a Lie Algebra

1. Definition

Let k be a commutative ring and let g be a Lie algebra over k.

Definition 1.1. A wuniversal algebra of g is amap ¢ : g — Ug, where Ug is
an associative algebra, with a unit satisfying the following properties:
1). € is a Lie algebra homomorphism,

(i.e., € is k-linear and €[z,y] = ez - ey — ey - ex).

2). If A is any associative algebra with a unit and @ : g — A is any
Lie algebra homomorphism, there is a unique homomorphism of associative
algebras ¢ : Ug — A such that the diagram

g —Ug
ol o
A

is commutative [i.e., there is an isomorphism
Hompe(g, LA) = Homa(Ug, A)

where LA is the Lie algebra associated to A, cf. Chap. I, example (iii).]

It is trivial that U g, if it exists, is unique (up to a unique isomorphism). To
prove its existence, we use the tensor algebra Tg of g, i.e., Tg =5 7" T"g,
where T"g = g® --- ® g = Q" g for n > 0. For any associative algebra A
with a unit, one has: Hommoed(g, 4) = Homass(Tg, 4).

Now let I be the two-sided ideal of T'g generated by the elements of the
form [z,y] —z2®@y+y®z, z,y €g.

Take Ug = T'g/I, then we have:

Theorem 1.2. Lete: g — Ug be the composition g — T'g — Tg — Ug.
Then the pair (Ug,€) 1s a universal algebra of g.

In fact, let a be a Lie homomorphism of g into an associative algebra A.
Since « is k-linear, it extends to a unique homomorphism 3 : Tg — A. It is
clear that () = 0, hence 1 defines ¢ : Ug — A, and we have checked the
universal property of Ug.

Remark. Let E be a g-module (i.e., a k-module with a bilinear product
g X E — E such that [z,yle = z(ye) —y(z - ¢) for z,y € g, ¢ € E). The
map g — End(E, E) which defines the module structure of E is a Lie homo-
morphism. Hence it extends to an algebra homomorphism Ug — End(FE, E)
and E becomes a Ug-left-module. It is easy to check that one obtains in this



