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Preface

This book forms an introduction to the common ground of brains,
machines, and mathematics, where mathematics is used to exploit
analogies between the working of brains and the control-compu-
tation-communication aspects of machines. It is designed for a
reader who has heard of such currently fashionable topics as
cybernetics, information theory, and Gédel’s theorem and wants
@ain from one source more of an understanding of them than
is afforded by popularizations. Here the reader will find not only
what certain results are, but also why. The number of pages has
been deliberately kept small so that a first reading is feasible in an
evening or two. Yet a lot of ground is covered, and the reader who
wants to go further should find himself reasonably well prepared to
tackle the technical literature. Full use of the baok does require a
moderate mathematical background—a year of college calculus
(or the equivalent “mathematical maturity’’). However, much of
the book should be intelligible to the reader who chooses to skip
the mathematical proofs, and no previous study of biology or
computers is required at all.

Before reviewing the contents, I should say a few words as to
the present status of neurophysiology and the nature of our model
making.

The use of microelectrodes, electron microscopes, and radio-
active tracers has yielded a huge increase in neurophysiological
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viii Preface

knowledge in the past few decades. Even a multivolume work such
as the “Handbook of Neurophysiology” cannot fully cover all the
facts. Many neurophysiological theories, once widely held, are
being questioned as improved techniques reveal finer structures
and more sophisticated chemicoelectrical cellular mechanisms. This
means that our presentation of mathematical models in this book
will have to be based on a grossly simplified view of the brain and
the central nervous system. The reader may well begin to wonder
what value or interest the study of such systems can have.

There is a variety of properties—memory, computation, learn-
ing, purposiveness, reliability despite component malfunction—
which it might seem difficult to attribute to “mere mechanisms.”
However, herein lies one important reason for our study: By
making mathematical models, we have proved that there do exist
purely electrochemical mechanisms which have the above proper-
ties. In other words, we have helped to “‘banish the ghost from the
machine.” We may not yel have modeled the mechanisms that the
brain employs, but we have at least modeled possible mechanisms,
and that in itself is a great stride forward.

There is another reason for such a study, and it goes much
deeper. Many of the most spectacular advances in physical science
have come from the wedding of the mathematicodeductive method
and the experimental method. The mathematics of the last 300
years has grown largely out of the needs of physics—applied
mathematics directly, and pure mathematics indirectly by a proc-
ess of abstraction from applied mathematics (often for purely
esthetic reasons far removed from any practical considerations).
In these pages we coerce what is essentially still the mathematics
of the physicist to help our slowly dawning comprehension of the
brain and its electromechanical analogs. It is probable that the
dim beginnings of biological mathematics here discernible will one
day happily bloom into new and exciting systems of pure mathe-
matics. Here, however, we apply mathematics to derive far-reach-
ing conclusions from clearly stated premisses. We can test the
adequacy of a model of the brain by expressing it in mathematical
form and using our mathematical tools to prove general theorems.
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In the light of any discrepancies we find between these theorems
and experiments, we may return to our premisses and reformulate
them, thus gaining a deeper understanding of the workings of the
brain. Further, such theories can guide us in building more useful
and sophisticated machines.

The beauty of this mathematicodeductive method is that it

allows us to prove general properties of our models and thus affords
a powerful adjunct to model making in the wire and test-tube
sense.’ .
Biological systems are so much more complicated than the
usual systems of physics that we cannot expect to achieve a fully
satisfactory biological mathematics for many years to come. How-
ever, the quest is a very real and important one. This book strives
to introduce the reader to its early stages. He will, I hope, find
that the results so far obtained are of interest. Certainly they
represent only a very minute fraction of what remains to be found
—Dbut the start of a quest is nonetheless exciting for being the
start. I do not believe that the: application of mathematics will
solve all our physiological and psychological problems. What I do
believe, though, is that the mathematicodeductive method must
take an important place beside the experiments and clinical studies
of the neurophysiologist and the psychologist in our drive to under-
stand brains, just as it has already helped the electrical engineer
to build the electronic computers which, though many, many
degrees of magnitude less sophisticated than biological organisms,
still represent our closest man-made analog to brains.

We can now review the scope of this book:

We will first take a very quick look at neurophysiology, and
from this we will formulate our crude first model of the brain as a
network of components called McCulloch-Pitts neurons. We will
see that anything an electronic computer can do can be done by
such a network. We shall study the relation of these networks with
finite automata and Turing machines; review work on the visual
system of the frog as an example of complicated brain structure;
and study the Perceptron (a machine that ‘learns’). We shall then
review neurological evidence for neuron malfunction. This review
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will stress the need to understand how to design networks which
function reliably despite component malfunction. After a glance
at the early von Neumann approach, we shall study Shannon’s
communication theory. We shall then be able to consider the
Cowan-Winograd solution to the problem of reliable design. Then
we turn to the study of Norbert Wiener’s cybernetics—the study
of control and communication in the animal and the machine. We
shall examine the fundamental concept of feedback and the re-
sultant insights gained into the functioning of the nervous system.
We then take Greene’s scheme of resonant frequencies in neural
nets as an antidote to a too-ready identification of real brains with
McCulloch-Pitts neural nets. After a discussion of homeostasis
and prosthesis, we shall turn to Gestalt and the recognition of
universals—how we perceive auditory and visual forms. The final
chapter will be devoted to Godel's incompleteness theorem. We
shall give a historical outline of the trends in mathematical thought
which led up to Godel's work, prove the theorem, discuss its
dramatic philosophical consequences for the foundations of mathe-
matics, and finally look at its role in the brain-machine contro-
versy.

This book is a revision of the lecture notes of a course delivered
in June-August of 1962 at the University of New South Wales in
Sydney, Australia. I want to thank John Blatt for inviting me to
the Visiting Lectureship; Derek Broadbent for inviting me to
broadcast the lectures; and Joyce Kean for her superb job of typing
up the original lecture notes.

I have spent the last two years with the Research Laboratory
of Electronics and the Department of Mathematics at the Massa-
chusetts Institute of Technology on a research assistantship
(supported by the U.S. Armed Forces and National Institute of
Health). I owe so many debts of gratitude to the people there that
I cannot fully do justice to them. However, I do particularly want
to thank Warren McCulloch for his continual help and encourage-
ment. It was George W. Zopf who first urged publication of the
lectures. Bill Kilmer gave the original lecture notes a helpful and
critical reading. For years I have nurtured the desire to claim at a
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point such as this, *“‘Any mistakes which remain are thus solely his
responsibility.” However, this would be a sorry expression of a
very genuine gratitude, and so I follow convention and admit that
any errors which remain are my responsibility.

Finally, I should like to thank all those authors whose work I
have quoted and their publishers for so graciously granting me
permission to use their material.

Michael A. Arbib
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Neural Nets,
Finite Automata,

and Turing Machines

1.1 Introduectory Neurophysiology

I want to start by giving a very sketchy account of neurophysiol-
ogy—merely sufficient as a basis for our first mathematical model.
We may regard the nervous system of man as a three-stage system
as shown in Fig. 1.1.f

Our fundamental hypothesis in setling up our model is that all
the functioning of the nervous system relevant to our study is mediated
solely by the passage of electrical impulses by cells we call neurons.
Actually, the human brain contains more glial cells than it con-
tains neurons. Until recently, it was neurophysiological orthodoxy
to believe that these glial cells served only to support and nourish
the neurons—functions irrelevant to our study. However, the last
15 years have seen a growing number support the view that the

1 The purpose of the arrows drawn from right to left will be made clear

in the discussion of feedback in Sec. 4.1. .
l
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Stimuli Do Nervous .
Receptors system Effectors Responses
(from - proper — (to
environment) — environment)

Figure 1.1 The nervous system of man considered as a three-stage
system.

glial cells actually carry out functions, such as memory, which
are of interest here. Throughout this book, we shall ignore such
posited glial functions. We shall also ignore such modes of neural
interaction as continuously variable potentials and transmission
of ‘hormones. In setting up our possible mechanisms, neural im-
pulses will fully suffice—future developments will, of course, require
the ascription of far greater importance to the other neural functions
and perhaps to the glia.

In the light of our fundamental hypothesis, then, we shall
simply view the nervous system proper as a vast network of
neurons, arranged in elaborate structures with extremely complex
interconnections. This network receives inputs from a vast num-
ber of receptors: .ie rods and cones of the eyes, the pain, touch,
hot, and cold receptors of the skin, the stretch receptors of the
muscles, etc., all converting stimuli from the body or the external
world into patterns of electrical impulses which convey informa-
tion into the network. These interact with the enormously com-
plicated patterns already traveling through the neurons (there
are estimated to be 10'° neurons in the neural net which is the
human brain!) and result in the emission of impulses which control
the effectors, such as our muscles and glands, to give our responses.
Thus we have our three-stage system: receptors, neural net, and
effectors.

We are not going to formulate models of the receptors or
effectors here, but we do want a model of the neural net. To do
this, we shall first model the neuron. The neurons of our nervous
system come in many forms, but we shall restrict our study to
neurons like that of Fig. 1.2.
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The neuron is a cell and so has a nucleus, which is contained
in the soma or body of the cell. One may think of the dendriles as
a very fine filamentary bush, each fiber being thinner than the
axon, and of the axon itself as a long, thin cylinder carrying

Dendrites

Direction |
of passage
of impulse

Figure 1.2 Schematic drawing of a neuron.

impulses from the soma to other cells. The axon splits into a fine
arborization, each branch of which finally terminates in a little
endbulb almost touching the dendrites of a neuron. Such a place
of near contact is called a synapse. Impulses reaching a synapse
set up graded electrical signals in the dendrites} of the neuron on
which the synapse impinges, the interneuronal transmission being
sometimes electrical and sometimes by diffusion of chemicals. A
particular neuron will only fire an electrical impulse along its axon
if sufficient impulses reach the endbulbs impinging on its dendrites
in a short period of time, called the period of latent summation.
Actually, these impulses may either help or hinder the firing of an
impulse and are correspondingly called excitatory or inhibitory.
The condition for the firing of a neuron is then that the excitation
should exceed the inhibition by a critical amount called the
threshold of the neuron. If we assign a suitable positive weight to

t A synapse may also occur on other axons. This “interaction of
afferents” is discussed in Sec. 3.1. )
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each excitatory synapse and a negative weight to each inhibitory
synapse, we can say that

a neuron fires only if the lolal weight of the synapses
which receive impulses in the period of lalent summaltion
exceeds Lhe threshold (1.1.1)

This picture of simple linear summation is, again, a gross
simplification. Further, the threshold is a time-varying param-
eter—however, this time variance has rarely been considered in
formal neuron modeling and plays no part in-the models we shall
consider here. The reader who is close to despair at this ever-widen- .
ing departure from reality is advised to re-read the introduction
for encouragement!

There is a small time delay between a period of latent sum-
mation and the passage of the corresponding axonal impulse to
its endbulbs, so that the arrival of impulses on the dendrites of a
neuron determines the firing of its axon at a slightly later time,

After an impulse has traveled along an axon, there is a time
called the refractory period during which the axon is incapable of
transmitting an impulse. Hence, during a length of time equal to
one refractory period, at most one impulse may be fired along
the axon. If we now choose as our unit of time the refractory
period of the neuron, we may specify the firing behavior of our
neuron by specifying for each of the first, second, third, etc.,
time intervals whether or not the neuron fired. We are thus led
to the simplifying assumption that our neuron (already far re-
moved from reality) may only fire at times { =1, 2, 3, 4,...
units of time after some suitable origin. We next make the gross
assumption that we may use the same discrele time scale for all
the neurons of our net. That is, we assume the firing behavior of
our net is completely specified by the firing pattern of the individ-
ual neurons at the discrete times { = 1, 2, 3,.... In line with
this, we assume that the axonal firing of a neuron is determined
by the firing pattern of inputs at its synapses one moment of our
discrete time scale earlier.
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1.2 The McCulloch-Pitts Model

The highly simplified neurophysiological considerations of the
last section lead to the McCulloch-Pitts model of the neuron:

Definition 1.2.1 A module (or formal neuron) is an element
with, say, m inputs z;, ..., 2, (m > 1) and one output d.
It is characterized by m + 1 numbers, its threshold 6, and the
weights wy, . .., W., where w; is associated with z; The
module operates on a discrete time scale { = 1,2,3,4,...,
the firing of its output at time n 4+ 1 being determined by
the firing of its inputs at time n according to the following
rule (cf. Statement 1.1.1): The module fires an impulse along
its axon at time n + 1 if and only if the total weight of the
inputs stimulated at time n exceeds the threshold of the
neuron.

If we introduce the symbolism

m{l) =0 for “m does not fire at time ¢~
m() =1 for “m does fire at time {’

(where m may be an axonal output or a synaptic input of a neuron),
we see that the above rule may be expressed symbolically as

dn+1) =1 if and only if Zw.x:(n) > 6

Note that a positive weight w; > 0 corresponds to an
excitatory synapse (i.e., module input) whereas a negative weight
w; < 0 means that z; is an inhibitory input.

In terms of this very simple model of a neuron, we may
immediately define our first model of a neural net:

Definitior. 1.2.2 A modular nel is a collection of modules, each
with the same time scale, interconnected by splitting the
output of any module into a number of lines and connecting
some or all of these to the inputs of other modules. An output
may thus lead to any number of inputs, but an input may
only come from at most one output.
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The inpuf lines of a net are those inputs b, &, ..., lna of
modules of the net which are not connected to modular outputs.
The oulpul lines of a net are those lines po, py, . . . , Py from
modular outputs which are not connected to modular inputs.
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Figure 1.3 A simple modular net.

In the example of Fig. 1.3, there are three input lines and four
output lines—note that the input lines may split and that the
output lines need not come from distinct modules.

We have now set up a model of the brain. To the reader who
thinks of a'model as an actual collection of wires and transistors,
my use of the word “model” here may seem somewhat strange.
Therefore, let me stress that throughout this book, the word is
used in the mathematical sense. The engineer feels he has modeled
a system when he has actually constructed an apparatus which
he can hope will behave similarly to the original system. The
mathematician, on the other hand, feels that he has modeled a
system when he has “captured” some properties of the system in
precise mathematical definitions and axioms in such a form that
he can deduce further properties of this “formal” (i.e., mathemat-
ical) model; thus, hopefully, explaining known properties of the
original system and predicting new properties. The concept of a
“modular net” has a precise mathematical definition (and we
shall prove theorems about it- in subsequent sections), and it is
in this mathematical sense that we consider it to be a model of
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the brain. Before we study it, let us stress that we have only ob-
lained it at the cost of drastic simplificalions:

a. We have assumed complete synchronization of all the neurons.

b. We have fixed the threshold and weights of each neuron for
all time.

c. We have ignored the effects of hormones and chemicals (e.g.,
alcohol) in changing the behavior of the brain.

d. We have ignored all interaction between neurons (e.g., due
to the electrical field associated with their impulses) save
that taking place at the synapses.

e. We have ignored the glial cells.

The list can be extended, and it must be realized that our
first model is only a slarling point for our study and not an end in
itself. However, our simplifications have not rendered our model
‘completely powerless, and a modular network can indeed store
information and carry out computations. We shall demonstrate
this in Sec. 1.4 by “blueprinting” a digital computer as a modular
network. First, however, we shall use Sec. 1.3 to introduce the
concept of “finite automaton” and relate it to that of “modular
network”; while in Sec. 1.7 we shall consider a trivial model of
perception by giving a mathemeotical characterization of the
dichotomies which may be made of its input sequences by a
finite automaton.

1.3 Finite Automata and Modular Nets

In this section, we introduce the concept of finite automaton in
such a way as to make it clear that every modular net is a finite
automaton. Our objective will then be to show that, conversely,
the input-output behavior of a finite automaton can always be
carried out by a suitably constructed modular net. Since it is
much easier, in general, to design a finite automaton for a given
task than to design the corresponding modular net, the result
clarifies for us what tasks our modular nets are capable of per-
forming (cf. Sec. 1.4).



