W. Larcher

Physiological Plant Ecology

Second, Totally Revised Edition

W. Larcher

Physiological Plant Ecology

Second, Totally Revised Edition

Translated by M. A. Biederman-Thorson

With 193 Figures

Springer-Verlag
Berlin Heidelberg New York 1980

Professor Dr. Walter Larcher
Institut für Allgemeine Botanik der Universität Innsbruck
A-6020 Innsbruck, Sternwartestr. 15

MARGUERITE A. BIEDERMAN-THORSON, Ph.D. The Old Marlborough Arms, Combe, Oxford, England

Translated and revised from the German edition "Walter Larcher, Ökologie der Pflanzen", first published 1973 by Eugen Ulmer, Stuttgart. © 1973 by Eugen Ulmer

ISBN 3-540-09795-3 2. Aufl. Springer-Verlag Berlin Heidelberg New York ISBN 0-387-09795-3 2nd ed. Springer-Verlag New York Heidelberg Berlin

ISBN 3-540-07336-1 1. Aufl. Springer-Verlag Berlin Heidelberg New York ISBN 0-387-07336-1 1st ed. Springer-Verlag New York Heidelberg Berlin

Larcher, Walter, 1929 – Physiological plant ecology. Translation of Ökologie der Pflanzen. Bibliography: p. Includes index. 1. Botany – Ecology. 2. Plant physiology. I. Title. QK901.L3513 1980 581.5 79-26396.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law, where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin · Heidelberg 1975 and 1980. Printed in Germany.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting, printing, and bookbinding: Carl Ritter & Co., Wiesbaden. 2131/3130-543210

Preface to the Second Edition

be accommodated in an introductory text, the requests and critical comments of users and reviewers of the original edition have been taken into account. The chapters have been rearranged; a survey of the effects of the physical environmental factors radiation and heat, and the plants' responses to them, is given in Chapter 2, whereas the chemical factors are treated in the chapters on metabolism and the turnover of matter. The ecophysiology of tropical plants and of plants growing in arid regions has been more strongly emphasized. The environmental influences affecting growth and development are mentioned occasionally, but are not discussed in such detail as those affecting metabolism, for as a rule the former are treated extensively in textbooks of plant physiology. References to ecosystems have been omitted to permit a sharper focus upon physiological relationships. I hope that the book will continue to be useful in this new form. It is not intended as - nor could it be - a comprehensive textbook of plant ecology; it is one of many possible ways of presenting what is known in the field. Many readers of the first edition have asked for expansion of the reference list. The data and interpretations on which the text and many tables are based were drawn from thousands of original publications, so that it is impossible to document each item of information with the appropriate citation. To provide the reader with better access to the literature and a greater opportunity to advance from the general to the concrete, most of the tables and figures are accompanied by additional references to reviews as well as papers on special topics. The list has thus grown to

Since the first edition of this book appeared the field of plant physiology and ecology has advanced so far as to call for a complete revision of the material. To the extent that they could

While revising the text I have received the generous cooperation of many colleagues in providing advice and documentation. Dr. M. A. Biederman-Thorson again conscientiously translated the new sections, and Mr. R. Gapp prepared most of the new

comprise almost 800 references. Nevertheless, many publications of proved value could not be included; I beg the under-

standing of the authors.

illustrations. Dr. K. F. Springer and his coworkers responded to my wishes with helpful understanding. To all of them I extend my sincere thanks.

Innsbruck, April 1980

W. LARCHER

Preface to the First Edition

Ecology is the science of the relationship between living organisms and their environment. It is concerned with the web of interactions involved in the circulation of matter and the flow of energy that makes possible life on earth, and with the adaptations of organism to the conditions under which they survice. Given the multitude of diverse organisms, the plant ecologist focuses upon the plants, investigating the influence of environmental factors on the character of the vegetation and the behavior of the individual plant species.

Plant ecophysiology, a discipline within plant ecology, is concerned fundamentally with the physiology of plants as it is modified by fluctuating external influences. The aim of this book is to convey the conceptual framework upon which this discipline is based, to offer insights into the basic mechanisms and interactions within the system "plant and environment", and to present examples of current problems in this rapidly developing area. Among the topics discussed are the vital processes of plants, their metabolism and energy transformations as they are affected by environmental factors, and the ability of these organisms to adapt to such factors. It is assumed that the reader has a background in the fundamentals of plant physiology; the physiological bases of the phenomena of interest will be mentioned only to the extent necessary for an understanding of the ecological relationships.

Ecology is very much a modern field, but by no means a recent innovation. I have tried to portray this rich historical background in the choice of illustrations and tabular material; the results presented reflect the broadness of vision, the struggles and the successes of the pioneering experimental ecologists in the first half of this century, as well as the advances in knowledge made most recently. Moreover, the student of ecology must bear in mind the particular characteristics of different localities; I have tried to include a broad selection of examples illustrating the ecophysiological behavior of plants in the greatest possible variety of habitats.

My first thanks are due to Dr. K. F. Springer; his publication of this English edition has made the textbook accessible to a wider circle of readers. I am grateful to the publisher of the original German edition, Roland Ulmer, for his cooperation. In particular, I thank Dr. Marguerite Biederman-Thorson for her thoughtful and sympathetic translation into English of the German text.

Above all, however, I should like to express my thanks to the pioneers of experimental ecology — Arthur Pisek, Otto Stocker, Heinrich Walter, and the late Bruno Huber. They inspired my enthusiasm for this difficult, but so attractive, field, and allowed me to benefit from their experience.

Innsbruck, September 1975

W. LARCHER

Abbreviations, Symbols and Conversion Factors

A	Area	dm_2^2	Unit of leaf area referring to
Acc	Acceptor molecule		the entire surface (upper and
ADP	Adenosine diphosphate		lower)
ATP	Adenosine triphosphate	dyn	Measure of force $(1 \text{ dyn} =$
В	Plant biomass (also called		10 ⁻⁵ N)
	phytomass, the mass of a	\boldsymbol{E}	Amount of water trans-
	stand of plants)		pired
$\Delta \boldsymbol{B}$	Change in biomass (positive	E	Einstein; amount of light
	for a growing stand)		quanta $(1 E = 1 \text{ mol pho-}$
bar	Unit of pressure		tons)
	$(1 \text{ bar} = 10^5 \text{ Pascal})$	E_p	Evaporative power of the air;
° C	Degree Celsius; relative	•	potential evaporation
	measure of temperature	erg	Unit of energy or work
\boldsymbol{C}	Concentration	•	$(1 \text{ erg} = 1 \text{ dyn} \cdot \text{cm})$
C_a	Concentration of CO ₂ and	$\boldsymbol{\mathit{F}}$	Photosynthesis
-	H ₂ O in the air outside a	F_{g}	Rate of gross photosynthesis
	leaf	•	(true photosynthesis)
C_{i}	Concentration of CO ₂ and	F_n	Rate of net photosynthesis
. •	H ₂ O in the intercellular sys-		(apparent photosynthesis)
	tem of a leaf	g	Gram; unit of mass
cal	Calorie, a unit of energy	\overline{G}	Grazing (loss of dry matter to
	(1 cal = 4.1868 joule =		consumers)
	4.1868 · 10 ⁷ erg)	GAP	Glyceraldehyde-3-phos-
CAM	Crassulacean acid metabo-		phate
	lism	h	Hour
Chl	Chlorophyll	ha	Hectare
D	Molecular diffusion coeffi-		$(1 \text{ ha} = 10^4 \text{ m}^2)$
	cient $(m^2 \cdot s^{-1})$	h	Planck's constant
.d	Day as a unit of time		$(6.625 \cdot 10^{-34} \text{ J} \cdot \text{s})$
d	Diameter	I	Irradiance; the radiation flux
DL_{50}	Drought lethality (degree of		at a given level within a stand
	dryness causing 50%		of plants or body of water
	injury)	I_0	Maximum radiation flux;
DM	Dry matter	· ·	that incident upon a stand of
dm^2	Unit of area; for leaves, it		plants or body of water
	refers to one (projected)	I_a	Long-wavelength radiation
	surface	_	from the atmosphere
			• .

I_{abs}	Absorbed radiation	LAI	Leaf-area index
I_{K}	Compensation light intensity	LÄR	Leaf area ratio
	(at which $F = R$)	lx	Lux; photometric unit of light
$ ilde{I}_{I}$	Long-wavelength radiation		intensity
• .	balance	m	Meter; unit of length
$ar{I}_{m{s}}$	Short-wavelength radiation	M	Molar; measure for concen-
•	balance .		tration
$I_{\mathcal{S}}$	Light intensity at which pho-	M_{abs}	Quantity of minerals
- 3	tosynthesis is saturated	aos	absorbed
IAA	Auxin, indole acetic acid	$M_{\scriptscriptstyle B}$	Mineral content of a stand of
IR	Infrared radiation	2** B	plants
110	(> 750 nm)	M_G	Loss of minerals via
J	•Joule; unit of energy	171 G	grazing
3	(1 $J = 1 N \cdot m$)	3.4	Quantity of minerals incor-
J	Flux, mass flow	M_{i}	
K		3.4	porated Loss of minerals as detri-
-	Kelvin; unit of temperature	M_L	
k	Coefficient, conversion fac-		tus
•	tor	M_r	Minerals lost in inorganic
k_F	Photosynthetic efficiency		form ("recretion")
	coefficient	mg	$Milligram (1 mg = 10^{-3} g)$
k_{M}	Recycling factor for mineral	min	Minute
	nutrients in a stand of	ml	Milliliter
_	plants		$(1 \text{ ml} = 10^{-3} \text{ l} = 1 \text{ cm}^3)$
k_{PP}	Productivity coefficient	mm	Millimeter; measure of
k_T	Reaction rate of biochemical		length
	processes at a given temper-		$(1 \text{ mm} = 10^{-3} \text{ m}) \text{ and mea-}$
	ature		sure of precipitation (1 mm
kcal	Kilocalorie		precipitation = 1 liter water ·
	$(1 \text{ kcal} = 10^3 \text{ cal})$		m ⁻² of ground)
kg	Kilogram; unit of mass	mol	Mole; measure of amount
kJ	Kilojoule		Micrometer
	$(1 kJ = 10^3 joule)$	μm	$(1 \mu m = 10^{-6} m)$
kLx	Kilolux (1 kLx = 10^3 lux)		·
kW	Kilowatt	n	Number of particles
	$(1 kW = 10^3 watt)$	N	Newton; unit of force
1	Liter; unit of volume		$(1 N = 1 kg \cdot m \cdot s^{-2})$
\boldsymbol{L}	Loss of organic dry matter as	NAD+	Nicotinamide-adenine-
	detritus		dinucleotide, reduced form:
L_{E}	Water loss via evapotranspi-	`	NADH + H+ (simplified no-
- 6	ration		tation NADH ₂); reduction
L_I	Water loss via interception		system
L_o	Water loss via runoff and	NADE	P+ Nicotinamide-adenine-
-0	percolation		dinucleotide-phosphate, re-
1	Wavelength (radiation)		duced form: NADPH + H ⁺
λ	Latent heat of vaporization		(NADPH ₂); reduction sys-
л	of water		•
	UI Watel		tem

NAR	Net assimilation rate (= unit leaf rate)	Q_H	Energy conversion asso-
nm	Nanometer	0	ciated with convection
11111	$(1 \text{ nm} = 10^{-9} \text{ m})$	Q_I	Energy conversion asso-
OAA	Oxalacetate		ciated with radiation from the
ω	Water use efficiency	0	sun and reradiation
P	Turgor pressure	Q_{M}	Energy conversion asso-
P	Production of vegetation	a	ciated with metabolism
$P_{\mathbf{g}}$	Gross productivity	Q_{P}	Energy conversion in plant
P_i^g	Inorganic phosphate	ο.	communities Recovered to the
P_{π}^{1}	Net productivity	Q_{Soil}	Energy conversion in the soil
^ ж П	Osmotic pressure	0	Temperature coefficient of
Pa	Pascal; unit of pressure	Q_{10}	biochemical and physiologi-
	(1 Pa = 1 N · m ⁻² =		cal process
	10 ⁻⁵ bar)	r	Transport or diffusion resis-
PEP	Phosphoenol pyruvate	•	tance
PGA	3-phosphoglyceric acid	r	Stomatal diffusion resis-
pН	Negative logarithm of the	r_s	tance
F	hydrogen ion	R	Gas constant
	concentration		$(R = 8.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$
PhAR	Photosynthetically active	R	Respiration
	radiation (400-700 nm)	R_d	Dark respiration
PP	Primary production (yield of	R_I	Respiration in the light
	a stand)	RH	Relative humidity
ppm	Parts per million	RuBP	Ribulose-1,5-bisphosphate
\overrightarrow{PPR}	Primary production rate	RuP	Ribulose-5-phosphate
	(yield of a stand per unit	RWC	Relative water content
	time)	. S	Second; unit of time
PR	Production rate (yield of a	σ	Surface tension of water
	plant per unit time)	SLA	Specific leaf area
Pr .	Precipitation (total falling on	t	Time (point in time or dura-
	a stand of plants)		tion)
Pr_n	Precipitation reaching the	t	Ton (Metric;
	ground beneath a plant	•	$1 t = 10^3 kg)$
	canopy	T	Temperature (all tempera-
π^{ullet}	Potential osmotic pressure		ture data in °C)
Φ	Quantum yield	τ	Matric pressure or
	[mol O ₂ · Einstein ⁻¹]		potential
Ψ	Water potential	TCA	Tricarboxylic acids
PWP	Permanent wilting percent-	TL_{50}	Temperature-stress lethality
	age		(the temperature at which
Рy	Pyruvate		50% of plants are killed by
$\boldsymbol{\mathcal{Q}}$	Energy flow		heat or cold)
Q_E	Energy conversion asso-	torr	Unit of pressure (1 torr =
	ciated with evaporation and		$1.33 \cdot 10^{-3} \text{ bar} \doteq \text{a } 1\text{-mm}$
	condensation		column of Hg)

Tr	Transpiration	$\mathbf{W}_{\mathtt{FC}}$	Water content of soil at field
UV	Utraviolet radiation		capacity
	(< 400 nm)	$\mathbf{W}_{\mathbf{PWP}}$	Water content of soil at per-
W	Watt; unit of power	•	manent wilting percentage
	$(1 \mathbf{W} = 1 \mathbf{J} \cdot \mathbf{s}^{-1})$	W_c	Fresh weight
W	Weight	w _s	Water content in saturated
W_{abs}	Quantity of water		state
	absorbed	WSD	Water saturation deficit
W_{act}	Actual water content (when	yr	Year
	sample is taken)	Z	Relative height or depth
W_{av}	Available water	÷	Approximately equal to
W_d	Dry weight	>	Larger than
		<	Smaller than

Equivalents

Energy (work)

```
1 J = 1 N·m = 1 kg·m²·s⁻² = 1 W·s = 0.239 cal = 10^7 erg

1 W·h = 3.6 kW·s = 3.6 kJ = 0.86 kcal

1 MJ = 0.278 kWh

1 cal = 4.1868 J·

1 cal (thermochemical) = 4.184 J

1 kcal = 1.163 W·h
```

Energy Consumption in the Evaporation of Water

```
Heat of vaporization at 0° C = 2.50 kJ \cdot g<sup>-1</sup> H<sub>2</sub>O (597 cal \cdot g<sup>-1</sup> H<sub>2</sub>O) at 10° C = 2.48 kJ \cdot g<sup>-1</sup> (592 cal \cdot g<sup>-1</sup>) at 20° C = 2.45 kJ \cdot g<sup>-1</sup> (586 cal \cdot g<sup>-1</sup>) at 30° C = 2.43 kJ \cdot g<sup>-1</sup> (580 cal \cdot g<sup>-1</sup>)
```

Radiation

1
$$W \cdot m^{-2} = 1'J \cdot m^{-2} \cdot s^{-1} = 1.43 \cdot 10^{-3} \text{ cal} \cdot \text{cm}^{-2} \cdot \text{min}^{-1}$$

1 $\text{cal} \cdot \text{cm}^{-2} \cdot \text{min}^{-1} = 6.98 \cdot 10^2 \ W \cdot m^{-2} = 6.98 \cdot 10^{-5} \ \text{erg} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$
1 $\text{erg} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} = 1.43 \cdot 10^{-6} \ \text{cal} \cdot \text{cm}^{-2} \ \text{min}^{-1} = 10^{-3} \ W \cdot \text{m}^{-2}$
1 $\text{klx} \doteq 4-10 \ W \cdot \text{m}^{-2} \ \text{(depending on light source)}$
1 $W \cdot \text{m}^{-2} \ \text{(PhAR)} \doteq 3-5 \ \mu\text{E} \cdot \text{m}^{-2} = 30-50 \ \text{nE} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$
1 $E = 1.7 \cdot 10^5 \ \text{J} \ \text{(at} \ \lambda = 700 \ \text{nm)} \ \text{to} \ 3 \cdot 10^5 \ \text{J} \ \text{(at} \ \lambda = 400 \ \text{nm)}$
1 fc (foot candle, obsolete) = 10.76 lux
1 ly (langley, obsolete) = 1 $\text{cal} \cdot \text{cm}^{-2}$

- XVI 为试选 需要完整PDF请访问: www.ertonghook.com

Pressure

```
1 MPa = 10^6 Pa = 10 bar

1 bar = 10^5 N·m<sup>-2</sup> = 10^5 Pa = 100 J·kg<sup>-1</sup> = 10^6 erg·cm<sup>-3</sup>

1 bar = 750 torr = 0.9869 atm

1 torr = 1.33 \cdot 10^{-3} bar \doteq 1-mm column of mercury

1 atm = 1.0132 bar = 760 torr
```

Phytomass.

```
1 g DM · m<sup>-2</sup> = 10^{-2} t · ha<sup>-1</sup>

1 g org. DM = 0.45 g C = 1.5 g CO<sub>2</sub>

1 g C = 2.2 g org. DM = 3.4 g CO<sub>2</sub>

1 g CO<sub>2</sub> = 0.65 g org. DM = 0.30 g C
```

Gas Exchange

```
1 g CO<sub>2</sub> turnover \doteq 0.73 g O<sub>2</sub> turnover (RQ:CO<sub>2</sub>/O<sub>2</sub> = 1)

1 g O<sub>2</sub> turnover \doteq 1.38 g CO<sub>2</sub> turnover

D<sub>CO<sub>2</sub></sub> = 0.64 D<sub>H<sub>2</sub>O</sub>

\cdot D<sub>H<sub>2</sub>O</sub> = 1.56 D<sub>CO<sub>2</sub></sub>
```

Further aids to conversion can be found in the manuals of methods by Sestak et al. (1971), Slavík (1974), O'Connor and Woodford (1975), Rose (1979), and Savage (1979), as well as in volumes of physiological and biological tables.

Contents

1	The Environment of Plants	1
1.1	The Hydrosphere	1
1.2	The Atmosphere	1
1.3	The Lithosphere and the Soil	2
1.4	The Ecosphere	3
2	Radiation and Temperature: Energy, Information,	
	Stress	5
2.1	Radiation	5
2.1.1	Radiation Within the Atmosphere	5
	Uptake of Radiation by Plants	9
2.1.3	Radiation and Plant Life	11
2.2	Temperature	18
2.2.1	The Energy Budget	19
2.2.2	The Effects of Temperature upon the Vital	
	Processes of Plants	. 27
2.2.3	The Temperature Limits for Plant Life	32
2.3	Periodicity	51
2.3.1	Climatic Rhythms	51
	Activity Rhythms	53
2.3.3	Synchronization of the Growth and Climatic	
	Rhythms	60
3	Carbon Utilization and Dry Matter Production	73
3.1	Carbon Metabolism in the Cell	13
3.1.1	Photosynthesis	73
3.1.2	Photorespiration	81
3.1.3	Catabolic Processes	83
3.2	CO ₂ Exchange in Plants	84
3.2.1		
	as a Diffusion Process	84

3.2.2	Photosynthetic Capacity and Specific Respiratory	
	Activity	94
3.2.3	The Effect of External Factors on CO,	
	Exchange	102
3.2.4	The Gas Exchange Balance	130
3.3	The Carbon Budget of the Plant	134
3.3.	Dry-Matter Production	134
	2 Utilization of Photosynthates and the Rate of	
	Growth	136
3.3.	3 Translocation of Photosynthates	142
3.4	The Carbon Budget of Plant Communities	144
	1 The Productivity of Stands of Plants	144
	2 Carbon Balance in Plant Communities	146
	3 The Net Primary Production of the Earth's Plant	
-	Cover	150
3.4.	4 Energy Conversion by Vegetation	157
· · · ·	. Energy conversion by regulation received	
4	The Utilization and Cycling of Mineral	
	Elements	158
	•	
4.1	The Soil as a Nutrient Source for Plants	159
4.1.	1 The Mineral Nutrients in the Soil	159
4.1.	2 The pH of the Soil ("Soil Reaction")	160
4.2	The Role of Mineral Nutrients in Plant	
	Metabolism	162
4.2.	1 The Uptake of Mineral Nutrients	162
4.2.	2 The Translocation of Minerals in the Plant	164
	3 Utilization and Deposition of Minerals in the	
•••	Planta,	170
4.2.	4 The Elimination of Minerals	174
4.3	Nitrogen Utilization and Metabolism	175
4.3	1 The Nitrogen Metabolism of Higher Plants	175
	2 Nitrogen Fixation by Microorganisms	180
4.4	Habitat-Related Aspects of Mineral	
	Metabolism	182
4.4	1 Calcicolous and Calcifugous Plants	182
	2 Plants of Saline Habitats	184
	3 Plants on Soils Rich in Heavy Metals	191
4.5	The Toxic Effects of Environmental Pollutants	195
4.5	1 Toxic Substances in the Environment	195
	2 Pollution Injury	195
	3 Pollution Resistance and Bioindicators of	
	Pollution Stress	198
4.6		
	Communities	202

1.6.1 1.6.2	The Mineral Balance of a Plant Community The Circulation of Mineral Nutrients Between	202
	Plants and Soil	205
5	Water Relations	206
5.1,	Poikilohydric and Homoiohydric Plants	206
5.2	Water Relations of the Plant Cell	208
5.2.1	The Water in the Cell	208
5.2,2	The Water Potential of Plant Cells	209
5.2.3	Water Potential and the Cellular Translocation of	
	Water	210
5.3	Absorption, Transpiration, and Water Balance in	
	the Plant	213
5.3.1	Water Uptake	213
5.3.2	The Translocation of Water	218
5.3.3	Water Loss from Plants	222
5.3.4	The Water Balance of a Plant	234
5.3.5	Water Balance in Different Plant Types	237
5.3.6	Water Balance During Drought	241
5.3.7	Drought Resistance	249
5.4	Water Economy in Plant Communities	258
5.4.1	The Water Balance of Stands of Plants	258
6 -	Synopsis	268
6.1	Analysis of Ecological Factors	268
6.2	Special Features of Ecological Methodology	270
6.3	Data Synthesis, Ecological Models, and Computer	210
0.0	Simulation	272
Liter	ature	.273
Subia	ect Index	207

1 The Environment of Plants

Plants have colonized nearly all regions of the earth, including the oceans and inland waters; on land they can be found even in such inhospitable places as deserts and fields of ice. Far back in geological time, when the first land plants were evolving, they encountered a world of water, air and stone. That is, their environment consisted of the hydrosphere, atmosphere and lithosphere. Later, as the cover of vegetation gradually closed, and with the assistance of microorganisms and animals, there developed the most important substrate of plants: the soil—the pedosphere.

1.1 The Hydrosphere

The hydrosphere comprises the *oceans* of the world, which cover an impressive 71% of the earth's surface, as well as the *inland waters* and the *groundwater*. Great differences exist in the chemical compositions of these bodies of water (Fig. 1.1). Sea water, rich in Na⁺, Mg²⁺, Cl⁻ and SO₄⁻² and with an average salt content of 35 g · 1⁻¹, differs fundamentally from fresh water, which usually contains more Ca²⁺ and HCO₃⁻; but there are local differences as well, depending on the nature of the inflowing waters and the degree of mixing. Moreover, *currents* have an effect upon temperature gradients. Where there are no currents, the strong absorption of radiation in the upper levels of the water leads to a characteristic layering with respect to temperature and density; this has a marked influence upon nutrition, productivity and distribution of aquatic organisms.

1.2 The Atmosphere

The air enveloping the earth provides plants with carbon dioxide and oxygen. It also mediates the balance of water through the processes of rain, condensation and "evapotranspiration". Continual movement of the air ensures that its composition remains fairly constant—79% nitrogen (by volume), 21% oxygen and 0.03% carbon dioxide, water vapor and noble gases (Fig. 1.1). In addition the air contains gaseous, liquid and solid impurities; these are primarily sulfur dioxide, unstable nitrogen compounds, halogen compounds, dust, and soot.

The part of the atmosphere with which plants come into contact is the *troposphere*, the weather zone of the earth's envelope of air. The nature of this zone varies over short distances and is characterized in several ways: (1) by the *weather* (short-term events such

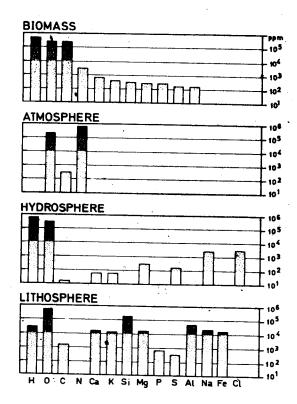


Fig. 1.1. Composition of the biomass, atmosphere, hydrosphere and lithosphere, in terms of the relative numbers of atoms (atoms per million atoms, not the proportion by weight) of the various chemical elements. The composition of living organisms is clearly distinct from that of the three components of their environment; they select from the available elements. according to their needs. The scale of the ordinate is logarithmic. For example, in the biomass H, O, C and N are present in the greatest proportions: 4.98 · 10⁵ atoms per million (i.e., about 50% of all atoms) are hydrogen atoms; oxygen and carbon atoms each comprise 2.49 · 105 atoms per million (about 25%), and 2.7 · 103 (about 0.3%) are nitrogen atoms. After Deevey (1970)

as showers, thunderstorms, and gusts of wind), (2) by meteorological events of intermediate duration such as periods of rain or frost and (3) by the *climate* (the average state and ordinary long-term fluctuations in meteorological factors at a given place). Depending on the terrain and on the density, height and type of vegetation, individual climatic regions of different sizes are formed. Within the large-scale "macroclimate" measured by the network of meteorological stations, one may distinguish "microclimates" that prevail in specific places such as certain slopes or narrow valleys, the bioclimate in (for example) stands of vegetation, and an "interface" climate—in the layer of air near the ground and the surface of leaves. Thus the parts of plants above ground are exposed to variability, in space and time, with respect to radiation, temperature, humidity, precipitation, and air motion; any of these can from time to time represent a threat to the organism.

1.3 The Lithosphere and the Soil

The earth's crust is the inexhaustible reservoir of the variety of chemical elements of which organisms are composed (Fig. 1.1). The lithosphere exchanges matter with the hydrosphere, and also affects the composition of the atmosphere through volcanic ac-