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PREFACE

This volume is a revision and extension of a book by the same
title published privately in lithoprinted form in 1935. The wide
demand for the preliminary edition showed that there was a need
for the type of presentation of statistics here offered.

The characteristic feature of the book is the effort to explain
the mathematical origins of the most widely used statistical
formulas in terms that persons with comparatively little mathe-
matical training can easily follow. We believe that, if statistical
workers do not take their tools as magic but understand them in
the light of their origins and assumptions, they will use these
tools more intelligently and more safely. In order to make such
understanding available to persons of little mathematical train-
ing we give the derivations in much detail. It is a well-known
fact that the source of difficulty in mathematical reading by
relatively untrained persons is largely the omission of steps which
are supposed to be obvious. When these steps are supplied and
when the use of specialized mathematical terminology is reduced
to a minimum, much that would otherwise be closed to the reader
is readily understandable. In order to make calculus available
as a tool for those who do not have a command of it, we open
this volume with a chapter on calculus. This is, of course, only
““a little calculus,” but it is enough to prepare the reader who has
not hitherto studied calculus to follow the derivations in which
we must draw upon this branch of mathematics. Our experience
with this presentation, as well as that reported by some others,
shows that this chapter on calculus can be mastered in about
10 per cent of the time normally allotted to a one-semester course
in advanced statistics.

The title of the book is somewhat too pretentious. It might
better be called Some Statistical Procedures and a Little Insight
into the Mathematical Bases of a Few of Them. It isnot, of course,
a comprehensive treatment of the mathematical bases of statis-
tiecs. It is intended to bridge the gap between the elementary
courses, in which the formulas are given purely authoritatively,

v
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STATISTICAL PROCEDURES
AND
THEIR MATHEMATICAL BASES

CHAPTER 1
A LITTLE CALCULUS

This chapter is intended for persons who have not previously
studied calculus. It presents, in a way that a reader who has had
only a limited training in mathematics should be able to follow,
practically all the calculus upon which we shall have occasion
to draw in this volume on statistics, which includes many funda-
mental elements common also to applications in other fields. We
trust that this simple presentation of the elements of differential
and integral calculus may not only prove useful to the student of
statistics but that it may also give to laymen in mathematics an
interesting and culturally enriching insight into the nature and
applications of this fascinating mathematical discipline.

In every case where one quantity varies in a manner that is
definitely related to the variation in Y
a second, the relation between the
two may be represented geometric- 4
ally by a curve of some shape (in- 2 1=
cluding a straight line). Take first ,
the simple relation y = z, where z -4 -2
may be represented by any number
and y will therefore of necessity be
the same number. We may lay off Y
this relation on the adjacent diagram. Fic. 1.—Straight line relation:

When 2 = 1, y = 1; when z = 2, Slope = 1.

y = 2, etc. If we go to the right one unit for z and then up one
unit for y, we shall have a point z,y; that shows the relation
between the two series at that value of z. If we go two units to

the right and two units up, we shall have a second point z2y,; ete.
1

[
»

-4




2 STATISTICAL PROCEDURES

A straight line may be drawn through all these points. Its slope
will be 4, 3, 4, 4, - - - = 1. Its slope will always be the same
at all values of z.

Suppose, now, that y = 0.4z. We shall then have a line
representing the relation as follows:

z =0, y=20
z =1, y =04
X 4 - z =2, y = 0.8
z =3, y =12
Tz =4, y =16
z =5, y =20

Fic. 2.—Straight line relation:
Slope = 0.4. e
Here likewise we can represent the relation by a straight line,
and this line will have the same slope at every value of z; at each
point a change of n units in z will be accompanied by a change
of 0.4n units in y.
But let us now take a more complicated case, y = z2

Y

z=0 y=0 -4

= s J=
$=%y y=% : _E_...B,:
T =1, y=1 :, 2-A':
z =14, y = 2% l: =] = :l
=2 y=4 X byl 154 X
z =3, y=9 -3-2-I_| 12 3
I=—%y Zl=%
z = —1, y=1 -2
z = —1%, y = 2% -3
T = —2 y=4 -41
z = —4, y =16 Fi1c. 3.—Curved line relation: Slope

................... changes with z.

Here the line is not a straight one; it does not have the same
slope at all values of . As we proceed out from the y axis, the
slope is at first very small; at £ = 1 it is moderate; and at z = 3
the slope is very steep. We have a similar behavior on the side
where z has negative values. We have, in fact, very great
difficulty in saying what the slope is, because it is always chang-
ing. We could draw a straight line between A and B, where
z = 1 and z = 2, respectively, but the slope of this line would
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not precisely describe the slope of the curve. If we took a smaller
change in z, say that represented by the distance A B’ on our scale,
our secant line would more nearly coincide with the curve. We
may consider A as any fixed point on the graph and allow B to
move along the curve and approach A as a limiting position
The changes in z would become smaller and smaller and approach
zero as a limit. The secant line drawn through A and B would
turn about A, approaching the tangent line at A as its limiting
position.

Now the basic task of the differential calculus (except in
regions of discontinuity and other similar matters which lie
beyond the scope of this chapter) is to ascertain the slope of a
curve at various points by determining the slope of a secant
which, in a limiting position, becomes the tangent to the curve
at the point in question. This same idea may be expressed in
other terms by saying that it is the task of the differential
calculus to ascertain the amount of change in a variable y that
corresponds to a certain change in a related variable z as these
increments in the independent variable z become so small as to
approach zero in value. At certain times in its history this
discipline has been called the infinitesimal calculus in recognition
of the fact that it deals with the relation of infinitesimal incre-
ments of one variable to infinitesimal increments of another.
In operating with the calculus we are often operating algebraically
with no curve in sight; but usually we can represent these
algebraic operations geometrically and show that what we are
seeking is something about the slope of that curve at some
point.

DIFFERENTIATION

Let us proceed with that algebraic process with which we said,
in our preceding paragraph, we shall often be operating with
no curve before us visually. We have the equation

y =z

We wish to find what change in y goes with a change in z at
any value of z in which we are interested. Let Az be an incre-
ment to be added to z (algebraically), and Ay be the correspond-
ing increment that would need to be added to y in order to
maintain the equation.
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1) ¥+ Ay = (z + Ax)?
Performing the indicated square,

y—l—Ay=:1:2+2avA:1;+A_:1:2

But our original equation gave us y = 22 We may subtract
the terms of this equation from the corresponding ones of our
last equation above on the basis of the axiom, “If equals be
subtracted from equals the remainders are equal.” We shall
then have

(2) Ay = 2z Az + Az’
Dividing through by Az, we shall have

3) ﬁ—g=2x+m

We said Az should be an increment added to z and Ay an
increment added to y, but we did not commit ourselves as to
the particular size of the increment. Let us now conceive of
Az as decreasing until it becomes infinitesimal in size. It will
necessarily drag Ay down with it, since the equation must con-
tinue to hold for all values of Az. When Az has become so small
as to have approached zero as its limit let us replace Ay/Azx by
dy/dx. At this limit the Az in the last term of our equation will
approach zero in value and thus disappear from consideration.
The reason why dy/dz can not be similarly dropped as of zero
value is that both its numerator and its denominator become
small together so that the fraction has a value that may be of
considerable dimension. And so as the limit zero is approached
by Az we have

dy

This 2z is called the derivative of the expression y = z2. The
process of getting it is called differentiation. If the dx appears
in the denominator of the fraction expressing the derivative, we
say that we are differentiating ‘“‘with respect to z”’; if the dy
appears in the denominator, as it will sometimes do in our later
developments, we say we are differentiating ‘‘ with respect to y.”
This process alone, in more or less complicated forms, constitutes
essentially all there is to the differential calculus. In terms of
the slope of a curve a derivative equal to 2z means that, at the
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point where z = 1, the slope of the curve is 2 times 1 or 2 (which
means that at that point the y values are changing twice as
rapidly as the z values through the infinitesimal distance to which
we have shrunken our Az at its limit). At the point where z = 3,
the slope of the curve relating the two is 2 times 3 or 6, which
means that y changes 6 units for each unit of change in z.

After a few more concrete examples we shall seek a general
rule for differentiating an expression directly without going
each time through a long process of algebraic manipulation.
But in the meantime the reader may be interested in observing
the relation of the form of the 2z to the 22 of which it is the deriva-
tive. He will notice that the exponent of the z has dropped from
2 to 1, a decrease of one unit. He will also observe that the
coefficient of the derivative has become 2, possibly the same 2
that was lost from the original exponent; about that we shall
see later.

Let us now try differentiating the expression y = z3. We
shall go through the same four fundamental steps, through
which we passed in our previous example, as follows: (1) Add
Ay to the y and Az to the z and perform the indicated involution.
(2) Subtract from the resultant equation our original equation.
(3) Divide through by Az. (4) Let Az approach zero as a limit,
and, as the limit is approached, substitute dy/dz, the symbol
for the derivative at the limit, for Ay/Az; drop from the equation
any of these Az values that stand without a A denominator, on
the ground that even in the first power their values are approxi-
mately zero and that in any of the higher powers the values
are lower than in the first power.

y=a
Adding Ay to y and Az to z,
(1) y + Ay = (z + Azx)?
Expanding the second term,
y + Ay = 28 + 3%z + 3z Az? + AL

Subtracting,

2) Ay = 3z?Ar + 3z Az® + AT’
Dividing by Az,

3) éy=3:1:2—l—3a:A:v+A_::;2

Ax
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Letting Az approach zero,

dy
4) T = 3x?

In this last expression the 3z Azr dropped out in the limit
because as Az approaches zero as a limit, any product formed
by multiplying it by any factor approaches zero and, in the
limit, disappears from the equation. For a similar reason the
Az’ becomes zero in the limit. In fact since Az becomes, as it
decreases, a very small quantity (z.e., a decimal quantity less
than 1), when raised to any power (including 1) and multiplied
by 1 or by any other factor it will approach zero and vanish
from the equation as Az approaches zero as its limit.

The derivative of y = a3 is, therefore, 3z2. Notice that here,
again, the original exponent has become the coefficient of the
derivative and that the exponent of the z in the derivative is
one less than that of the original quantity. Let us now take a
more generalized example,

y =

where m may represent any positive integer.! Performing in
succession our four fundamental steps,

1) y + Ay = (z + Az)"

Expanding,

y + Ay = 27 + nz*Az + ﬁ(%—?‘—l) AL
+n(n I‘12)(‘7;— 2) O v SN
y=z"

was our original equation, to be subtracted,

(2) Ay = nz Az + ~__n(1; _2 1) 2 2ALe
4 ;12)(."3— 2) pndZd 4 -

1 Tt may be shown that the rule for differentiating functions of this form
will hold for any real value of n.
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3) = nzt 4+ i =

n—%
Az 12 A
n(n — 1)(n — 2)
1-2-3
Letting Az approach zero as limit and observing what was
said above about the vanishing of all powers of Ax that stand

without a A denominator, we have remaining

Z_g = nxr! (Derivative of the function y = z7) (1)
From this general case it is now obvious that what we inferred
as a possibility in our two previous examples is in fact the rule:
the derivative in respect to x at any power has as ils coefficient the
original power of x and as its exponent the original exponent
decreased by 1. This must be so because only the second term in
the binomial expansion is free from the Az after the subtraction
of step (2) and the division of step (3) and because the coefficient
of the second term in a binomial expansion is always the power
to which the binomial is being raised and its exponent is always
the original exponent less 1.
Suppose now we try the effect of a constant as coefficient of
our variable z,

+ 2 —3AL? 4+ -

y = ax®
Here a may represent any coefficient we please, whether integral

or fraction, whether positive or negative. Going through our
four steps,

1) y + Ay = a(z + Ax)»

y + Ay = az™ + anz" Az + —an(?_; D pniag?
= an(n 1_ :;) (7; —2) AL - -
(2) Ay = anz~'Ar + a_@(_;ti;_l) 27z’

an(n — 1)(n — 2)
1-2-3

+ 2 3AL’ 4+ -

Ay _ a1 4 an(n — 1)
3) Ay — 9nT +41_2

+

" 2Ax

an(n — 1)(n — 2)
1-2-3

x"*z‘A_xz 4+ -
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@) dy = anz! (Derivative of a constant times @)

dz a function of the form zn)

Here the constant reappears in the derivative unchanged.
Hence, since a may represent any constant, we may say: The
derivative of a constant times a function is the same constant times
the derivative of the function.

Let us now take a more complicated expression, one involving
z in each of several terms with different powers in each term, the
total function being the sum of these several functions.

y = az® + bz? + cx
(1) y + Ay = az® + 3azx?Ar + 3ax Az® + a Az® + bz?
+ 2bx Az + b Az + cx + ¢ Ax

y = az’ + bx? 4 cx
(2) Ay = 3az?Az + 3ax Az’ + a Az’ + 2bxr Az + b Az’ + ¢ Az
(3) i—z=3ax2+3aa;Ax+aA_xZ+2bx+be+c
@) % =30z + 200 +c Cmetionyy " e sum of(3)

If the reader will compare this derivative with the expression
we started out to differentiate, he will observe that the derivative
of the complex quantity made up of the sum of three terms is
precisely the sum of the derivatives of the several terms if dif-
ferentiated separately. If he will carry through on paper the
generalized case or visualize to himself how it would work out,
he will easily convince himself that that same conclusion would
hold universally for any values for which the binomial law holds.
Therefore, the derivative of the sum of any number of functions is
the sum of their derivatives.

Let us now try differentiating a constant, y = a. Since
2% = 1, the above equation might be written

y = 2%
Going through our four steps,
(1) y+ Ay = (z + Az)% = a

Subtracting our original equation, ¥ = a, we get

_ Ay _ . dy _
(2) Ay = 0. Then (3)Ax_ 0; and (4) Tz =0



