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Preface

With the arrival of the 90’s, a successful series of small annual workshops
have been organized in Vancouver (Canada) in the summers of 1990 and 1992
and in Marseille (France) in the summers of 1991 and 1993. The main subject
of such workshops was information dissemination in interconnection networks
for distributed memory parallel computers.

The first Canada-France Conference on Parallel Computing grew out of such
workshops, along with the well established and very productive collaboration be-
tween Canadian and French researchers, aiming to foster collaboration between
theoreticians who study the design and analysis of parallel and distributed al-
gorithms and networks, and practitioners who apply, adapt, and extend the
theoretical results to solve real-world problems.

This Conference, that is open to all researchers from the international com-
munity working in the area, is a complement to the annual workshops. Its
scientific program consists of four sessions composed by one invited speaker fol-
lowed by five contributed talks each. Their themes are parallel algorithms and
complexity, interconnection networks and distributed computing, algorithms for
unstructured problems, and structured communications. The contributed pa-
pers in this proceedings were selected by the Program Committee on the basis
of referee reports. Each paper appearing in these proceedings was reviewed by
at least two referees who judged the papers for originality, quality, and consis-
tency with the themes of the conference. Nick Pippenger’s invited paper was
also refereed. We wish to thank all of the authors who responded to the call for
papers, our invited speakers, and all of the referees and Program Committee
members who reviewed papers.

We are grateful to our partner, the Centre Jacques Cartier, and to the
PRC C3 of the French CNRS for financial support, to Centre de Recherche
en Informatique de Montréal, to Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal, and Laboratoire de I’Informatique du
Parallélisme, Ecole Normale Supérieure de Lyon for secretarial support, and to
Concordia University for providing the facilities for the Conference. Also, we
especially thank Valerie Roger, Jean-Louis Duclos, Eliane Fleury, and Jocelyne
Richerd, responsible for most of the secretarial duties related to the conference,
as well as the members of the Organizing Committee for doing triple duty. In
addition to handling organizational details including local arrangements, pub-
licity, and funding, they served as referees and as Program Committee members.

March 1994 M.Cosnard, A.Ferreira, J.Peters



Vi
Préface

Avec arrivée des années 90, une série réussie de petits séminaires de recherche
ont été organisés a Vancouver (Canada) pendant les étés 1990 et 1992 ainsi qu’a
Marseille (France) pendant les étés 1991 et 1993. Le sujet principal de ces sémi-
naires était I’étude des communications dans les réseaux d’interconnexion des
ordinateurs paralléles & mémoire distribude.

La premiére conférence Canada-France sur le Calcul Paralltle est issue de
ces séminaires, couplée avec la collaboration bien établie et trés productive entre
chercheurs Canadiens et Francais, dans ’objectif de développer la collaboration
entre les théoriciens qui étudient la conception et P’analyse d’algorithmes par-
alleles et distribués et les réseaux, et les praticiens qui appliquent, adaptent et
étendent la recherche théorique pour résoudre des probléemes du monde réel.

Cette conférence, qui est ouverte 4 tout chercheur de la communauté interna-
tionale travaillant dans le domaine du calcul paralléle, est donc une suite logique
aux séminaires annuels. Son programme scientifique est constitué de quatre
sessions comportant chacune un conférencier invité suivi de 5 intervenants. Les
thémes de ces sessions sont respectivement les algorithmes paralléles et la com-
plexité, les réseaux d’interconnexion et Pinformatique distribuée, les algorithmes
pour des problémes non-structurés, et les communications structurées. Les ar-
ticles qui sont publiés dans ces actes ont été sélectionnés par un Comité de
Programme sur la base des rapports des relecteurs. Chaque article a été jugé
par au moins deux relecteurs sur la base de son originalité, de sa qualité et de
sa pertinence avec les thémes de la conférence. La contribution invitée de Nick
Pippenger a aussi été examinée par le comité de lecture.

Nous souhaitons remercier tous les auteurs qui ont répondu & ’appel 4 con-
tribution, les conférenciers invités, tous les relecteurs et les membres du comité
de programme qui ont jugé de la qualité des articles.

Nous remercions également notre partenaire, le Centre Jacques Cartier, le
CRIM a Montréal et le PRC C3 du CNRS Frangais pour le support financier,
le Département d’Informatique et de Recherche Opérationnelle de I’Université
de Montréal, le Laboratoire de I'Informatique du Parallélisme, Ecole Normale
Supérieure de Lyon pour le support de secrétariat, ainsi que 1’Université de
Concordia qui a fourni les facilités pour la conférence.

Nous voulons remercier particuliérement Valérie Roger, Jean-Louis Duclos,
Eliane Fleury, et Jocelyne Richerd, qui ont assumé la plupart des taches admin-
istratives et de secrétariat lides a la conférence, ainsi que les membres du comité
d’organisation pour leur triple responsabilité. En plus de la prise en charge de
Porganisation incluant les préparatifs sur place, la publicité et la recherche de
financement, ils ont également accepté d’étre relecteurs et membres du comité
de programme.

Mars 1994 M.Cosnard, A.Ferreira, J.Peters
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Juggling Networks

Nicholas Pippenger

University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract. Switching networks of various kinds have come to occupy a
prominent position in computer science as well as communication en-
gineering. The classical switching network technology has been space-
division-multiplex switching, in which each switching function is per-
formed by a spatially separate switching component (such as a crossbar
switch). A recent trend in switching network technology has been the
advent of time-division-multiplex switching, wherein a single switching
component performs the function of many switches at successive mo-
ments of time according to a periodic schedule. This technology has the
advantage that nearly all of the cost of the network is in inertial mem-
ory (such as delay lines), with the cost of switching elements growing
much more slowly as a function of the capacity of the network. In or-
der for a classical space-division-multiplex network to be adaptable to
time-division-multiplex technology, its interconnection pattern must sat-
isfy stringent requirements. For example, networks based on randomized
interconnections (an important tool in determining the asymptotic com-
plexity of optimal networks) are not suitable for time-division-multiplex
implementation. Indeed, time-division-multiplex implementations have
been presented for only a few of the simplest classical space-division-
multiplex constructions, such as rearrangeable connection networks. This
paper shows how interconnection patterns based on explicit constructions
for expanding graphs can be implemented in time-division-multiplex net-
works. This provides time-division-multiplex implementations for switch-
ing networks that are within constant factors of optimal in memory cost,
and that have asymptotically more slowly growing switching costs. These
constructions are based on a metaphor involving teams of jugglers whose
throwing, catching and passing patterns result in intricate permutations
of the balls. This metaphor affords a convenient visualization of time-
division-multiplex activities that should be of value in devising networks
for a variety of switching tasks.

1. Introduction

In this paper we will present a metaphor for describing the construction and
operation of time-division-multiplex networks, and use it to present a new
time-division-multiplex implementation of an explicit construction for expanding
graphs, which are an essential component in many constructions for switching
networks. Both the new metaphor and the main techniques for construction of
time-division-multiplex networks will be illustrated in Sect. 2 by a well known



construction for rearrangeable connection networks. This construction was de-
scribed in the context of space-division-multiplex networks by Benes [6] in 1964.
The time-division-multiplex implementation was first described by Marcus [13]
in 1970, and has recently been rediscovered by Ramanan, Jordan and Sauer [23].
The resulting implementation is “time-slot interchanger” in the sense of Inose
[9]. In Sect. 3 we indicate how these methods can be adapted to other types of
switching networks. The main obstacle for such applications is the requirement
for “expanding graphs” (and related objects) presented by many constructions
for switching networks. In Sect. 4 we present a time-division-multiplex implemen-
tation of a well known construction for expanding graphs (and, more generally,
for graphs with a prescribed “eigenvalue separation ratio”). This construction
was first proposed by Margulis [14] in 1974. Quantitative estimates essential for
its application were provided by Gabber and Galil [8] in 1981, and improvements
to these estimates have been given by Jimbo and Maruoka [10], whose version of
the space-division-multiplex construction we follow. In Sect. 5 we present some
open problems prompted by this work.

2. Connectors

Imagine a juggler who can with complete reliability throw balls to a fixed height,
so that they always return a fixed amount of time after they are thrown. All
amounts of time considered in this paper will be multiples of some fixed unit
of time that will be called the pulse. Suppose that our juggler can take a ball
at each pulse from an external agent, the juggler’s source, and can give a ball
at each pulse to another external agent, the juggler’s sink. Suppose further that
at each pulse the juggler can execute either of two moves, which will be called
the straight and crossed moves. In the straight move, the juggler rethrows the
ball that returns from the air (if any such ball returns), and gives the ball taken
from the source to the sink (if any such ball is taken). In the crossed move, the
Juggler throws the ball taken from the source (if any is taken), and gives the ball
that returns from the air to the sink (if any returns).

Now imagine a chain of jugglers; that is, a finite sequence of jugglers
Ji,...,Ju in which Jy is the source of Jx41, and Jayp is the sink of Jy, for
1 < A < p. (The source of J; and the sink of J, are external to the chain. They
will be called the source and sink of the chain.) We assume that the jugglers
may have different “spans” (where the span of a juggler is the amount of time
between the throw of a ball and its return), but that all of these are multiples
of a common pulse. Depending on the spans of the various jugglers, and on the
sequence of straight and crossed moves executed by each juggler, the sequence
of balls passed by the source of the chain (and empty pulses during which no
ball is passed) will be rearranged in some way before being passed to the sink of
the chain.

In what follows, we shall regard the span of each juggler as a fixed and
unchanging attribute of the juggler, while we regard the sequence of moves as
being variable. How does each juggler decide what sequence of moves to execute?
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Our assumption will be that each juggler has a partner, called the juggler’s coz,
who calls out the name, “straight” or “crossed”, of the move to execute at each
pulse. How does the cox decide what sequence of moves to call? Qur assumption
will be that each cox is also a juggler who juggles a fixed sequence of balls. A
cox has no source or sink, and always executes straight moves, rethrowing each
ball as it returns from the air. We shall assume that a ball returns at each pulse
(there are no empty pulses), so that the number of balls being juggled by the
cox is equal to the cox’s span (which may be different from the cox’s partner’s
span). Finally, we shall assume that each ball juggled by the cox has one of two
colors, say red for “straight” and blue for “crossed”, and that the cox calls out
the move corresponding to the color of each ball as it is rethrown. Thus each cox
calls for a periodic sequence of moves, corresponding to the cyclic sequence of
colors of balls in the cox’s pattern, with a period that is equal to the cox’s span.

We can now give a simple example showing how a coxed chain of jug-
glers can serve as a model for a time-division-multiplex rearrangeable con-
nection network. Let n = 2” be an integral power of 2. Consider a chain
of 2v — 1 jugglers Ji,...,Jay—1. Suppose that jugglers Jp,...,J, have spans
20 = 1,...,2"~1 = n/2, respectively, and that jugglers Jy41,..., Jav-1 have
spans 2" "2 =n/4,..., 90 — 1, respectively. Suppose further that all 2v — 1 coxes
have span 2 = n.

Suppose that the source of the chain just described passes it a sequence of
balls at successive pulses. Let us divide the pulses into a sequence of frames,
with each frame comprising n successive pulses. The sequence of balls passed
by the source to the chain may be broken into frames, with each frame of balls
comprising the balls passed to the chain during a frame of pulses. The sequence
of balls passed by the chain to its sink may be broken into frames in a similar
way. Furthermore, we may establish a correspondence between source frames and
sink frames in the following way. Imagine that each juggler in the chain executes
only crossed moves, so that the stream of balls from the source is passed on to
the sink after a fixed delay, equal to the sum of the spans of the jugglers in the
chain (which is in this case 3n/2 — 2). Thus each source frame corresponds to a
sink frame that is the series of n pulses during which the balls of the source frame
emerge from the chain in this situation. The positions of the n balls within their
frame will be called slots. We shall index the slots of each frame from 1,...,n
(slot 1 is the earliest, and slot n the latest, slot of its frame).

Theorem 0. For every permutation = : {1,...,n} — {1,...,n}, there exist
patterns for each cor that cause each ball that is passed by the source to the
chain in slot i of a frame to be passed by the chain to its sink in slot w(2) of the
corresponding frame.

The proof of this theorem, which is implicit in the work of Marcus [13] in 1970,
is based on the construction of Benes for rearrangeable connection networks. This
space-division-multiplex construction employs (2v — 1)2~! switching elements
(2 x 2 crossbar switches), arranged in 2v — 1 stages, with each stage comprising
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2”~1 crossbars. In the time-division-multiplex implementation of this construc-
tion, each of the 2v — 1 jugglers in the chain will simulate the 2”~1 crossbars of
the corresponding stage.

The space-division-multiplex construction is usually described recursively. In
the drawing resulting from this description, crossbars are depicted as “boxes”
and the wires interconnecting them are depicted as “lines” that follow “perfect
shuffle” interconnection patterns. It is possible to redraw the this picture, how-
ever, so that the wires that carry the signals from the inputs to the outputs
remain parallel to each other, with the crossbars of each stage conditionally ex-
changing the signals on wires separated by a fixed distance (depending upon the
stage). This can in fact be done so that the distance in each stage is just the
span that we have assigned to the corresponding juggler.

When this redrawing has been done, we see that the task of a juggler for
each pair of slots (separated by the span of the juggler) is either to leave them
unaffected, or to exchange the balls in these two slots. In the latter case, we
need to “delay” the contents of the earlier slot by a number of pulses equal to
the span, and to “advance” the contents of the later slot by the same amount.
Since we cannot implement negative delays, we add a constant delay, equal to
the span, to all slots of the frame. With this adjustment, each juggler’s task
Is either to delay both slots by the span (which can be accomplished by three
crossed moves at appropriate pulses), or to delay the earlier slot by twice the
span and the later slot not at all (which can be accomplished by a crossed move,
followed by a straight move, followed by another crossed move). Thus in any
case the juggler can be instructed to perform the appropriate sequence of moves
by a suitable pattern for the cox.

We may summarize the import of Theorem ( by saying that a time-division-
multiplex rearrangeable connection network with n — 2¥ slots can be imple-
mented by a juggling network with 2v — 1 = O(logn) jugglers, overall delay
3n/2 — 2 = O(n), and total memory (3n/2 - 2) + (2v -~ 1)2* = O(nlog n). (In
the expression for the total memory, the term (3n/2 — 2) represents the mem-
ory for the principal jugglers in the chain, while the term (2v — 1)2" represents
the memory of the coxes.) This yields an extremely attractive time-division-
multiplex implementation, since the only aspect of the cost that grows as fast
as the size of the corresponding space-division-multiplex network (as O(nlogn))
is the total memory, which can be furnished by relatively inexpensive technol-
ogy (inertial delay lines), whereas the number of high-speed switching elements
(represented by the Jugglers) grows much more slowly (as O(log n)).

In our description of juggling networks, we have assumed that Jjugglers exe-
cute their moves instantaneously, so that a ball received by a juggler executing
a straight move is passed on at the same pulse. In practice there would be a
fixed overhead time for a Juggler, which might be a large fixed multiple of the
pulse. In the chain of jugglers we have described, and more generally in any jug-
gling network in which all balls are processed by the same number of jugglers,
this overhead delay can be ignored in the analysis of the network, and it results
merely in the addition of a constant delay per juggler being added to the overall
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delay. Even in more complicated juggling networks, with different numbers of
jugglers on various paths between the source and the sink (as is necessary, for
example, for the efficient construction of superconcentrators), this overhead de-
lay can be taken into account by setting up “time zones” for the various jugglers,
and introducing extra delays to compensate for differences in time zones. Thus
we shall maintain the convenient fiction that jugglers act instantaneously, as it
will have no effect on our conclusions and will simplify our analysis.

3. Applications

The great economy and elegance of the construction given in Sect. 2 leads us
to seek other applications for these ideas. The natural starting point is the
class of switching networks with interconnection patterns similar to that of the
Benes network. Some prominent members of this class are (1) the spider-web
interconnection networks (see Pippenger [19,20]), (2) the Cantor non-blocking
network [7], and (3) the Batcher bitonic sorting network [6]. The first two of
these are externally controlled interconnection networks analogous to the Benes
network, and require no further comment. The Batcher bitonic sorting network,
however, is based on comparators, and we should say something about how these
devices can be realized by jugglers.

As described by Batcher [5], a comparator is a finite automaton that sorts
two records received at its inputs, producing the same two records in sorted order
at its outputs. To do this, it receives the records one bit at a time, with the bits
of the keys by which the records are to be sorted preceding any other data in
the records, and with the bits of the keys being received in order of decreasing
significance. As long as the bits of the two input records remain identical, these
identical streams of bits are reproduced at the outputs. Once the bits of the
input keys differ, the correct sorted order is established, and the remainders
of the records are reproduced at the outputs in this order. Viewed as a finite
automaton, a comparator requires two bits of state information to keep track of
whether or not the sorted order has been established and, if so, what that order
is.

A time-division-multiplex implementation of a comparator entails three jug-
glers: a principal juggler who juggles balls representing the successive bits of the
records, an assistant who juggles balls representing the state of the comparator
(these balls will be of three distinct colors, representing the three possible states
of the automaton), and a cox who instructs the other two jugglers as to which of
the larger and smaller records should appear in the earlier and later output slots.
In this way one can easily construct a time-division-multiplex implementation
of Batcher’s bitonic sorting network [5] with O((log n)?) jugglers, overall delay
O(n) and total memory O (n(logn)?).

To go beyond these simple applications, however, it is necessary to employ
one of the essential tools of the theory of switching networks: expanding graphs
(or, more generally, graphs with favorable eigenvalue separation ratios). Armed
with an efficient time-division-multiplex implementation of this tool, we can
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explore the possible time-division-multiplex analogs of the following kinds of
networks: (1) concentrators and superconcentrators, as introduced by Pinsker
[16] and Valiant [24] (see also Pippenger [21]), (2) non-blocking connection net-
works, following Bassalygo and Pinsker [4] (see also Pippenger [17]), (3) sorting
networks, following Ajtai, Komlés and Szemerédi [1,2] (see also Pippenger [18]),
and (4) self-routing networks, as introduced by Arora, Leighton and Maggs [3]
and Pippenger [22]. We shall not delve further into any of these applications
here, but will describe in Sect. 4 a time-division-multiplex implementation for
expanding graphs that should be of use in attacking all of them.

4. Expanders

This section is devoted to the time-division-multiplex implementation of ex-
panding graphs. Our implementation will be based upon a particular explicit
construction for expanding graphs, originated by Margulis [14], with improve-
ments due to Gabber and Galil [8] and Jimbo and Maruoka [10].

We shall construct a basic expanding graph, which is a regular bipartite
multigraph G = (A, B, E), in which every vertex (in AU B) has degree 8 (meet
8 edges in E), and in which A and B each contain n vertices, where n = m? is
a perfect square, and m = 2* is a perfect power of 2 (so that n = 4# is a perfect
power of 4).

We shall do this by describing 8 perfect matchings E;,..., Es C A x B,
the union E; U ---U Eg of which is E. To describe these matchings, we let Z,,
denote the ring of integers modulo m, and identify both A and B with the direct
product Z,, x Z,,, which we shall regard as having for its elements the 2-element
columns of elements from Z,,,. Each of the matchings E; will then have the form

Ei ={(2,7:(2)) : 2 € Zpy x Z},

where 7; is a permutation of Z,, x Z,, defined by an affine mapping of the form

z a b z u
G- G)+)
Thus it will suffice to specify, for each i € {1,...,8}, the matrix (g 3) and

the column

For one particular construction given by Jimbo and Maruoka [10], the matrix

((cl' Z) is one of the matrices ((1) ?), (é (1)) or their inverses ((1) —12>,

(__12 (1)) , and the column (:) is one of the columns (é) ) ((1)) or their neg-

atives _01 , _01 . Thus it will suffice to show how the permutations corre-

sponding to each of these matrices and columns can be implemented by juggling



