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Preface

We cordially welcome you to the proceedings of the 2007 International Sym-
posium on Ubiquitous Computing Systems (UCS) held at Akihabara, Tokyo,
Japan. UCS has become a symposium for the dissemination of state-of-the-art
research and engineering practices in ubiquitous computing with particular em-
phasis on systems and software. UCS 2007 was the fourth of this series of inter-
national symposia. This was the year for the Next Generation Network (NGN) to
be commercially launched so that the Internet could become the infrastructure
for communications and computing substituting the NGN in telephone networks.
The maturity of the Internet encourages the research and development of the
next computing systems, where ubiquitous computing is recognized as one of the
most promising computing paradigms.

This symposium was organized by IPSJ SIGUBI, IEICE USN and UCN,
Korea, in cooperation with the IEEE Tokyo Section, IPSJ SIGEMB, IEICE
Smart Info-media Systems Technical Group, and Human Interface Society. It
was also sponsored by Ubiquitous Networking Forum, Nokia, NTT, SCAT, 1ISF
and TAF.

This year, we had 96 submissions from 18 countries. The Program Committee
reviewed all the papers carefully and then selected 16 full papers and 8 short
papers. The very low acceptance rate of about 22.6% clearly demonstrates the
high quality of the conference, and this tradition will continue in the upcoming
conferences. Two distinguished speakers were also invited for keynote speeches,
who enlightened the audience on ubiquitous computing and applications.

The high-quality technical program of UCS 2007 depends very much on the
precise and stringent review process. The Technical Program Committee con-
sisted of 62 excellent members. Most reviews ware almost of journal paper review
quality, and the paper selection was very serious and strict.

Along with the symposium, we also offered a workshop and a poster session.
This was for providing the researchers and engineers with opportunities to share
their ideas and solutions for a broad range of challenging problems in this area.

As General Co-chairs and Program Co-chairs, we would like to express our
appreciation to all the volunteers working hard for the symposium: members
of the Steering Committee, the Organizing Committee, the Program Commit-
tee, the authors and the reviewers. Special thanks go to Yoshito Tobe and Jin
Nakazawa.

November 2007 Haruhisa Ichikawa
We-Duke Cho

Ichiro Satoh

Hee Yong Youn
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RFID Privacy Using Spatially Distributed
Shared Secrets

Marc Langheinrich! and Remo Marti?

! Inst. for Pervasive Computing
ETH Zurich, 8092 Zurich, Switzerland
langheinrich@Qinf.ethz.ch
2 Ergon Informatik AG
8008 Zurich, Switzerland
remo.marti@ergon.ch

Abstract. Many of today’s proposed RFID privacy schemes rely on the
encryption of tag IDs with user-chosen keys. However, password manage-
ment quickly becomes a bottleneck in such proposals, rendering them
infeasible in situations where tagged items are repeatedly exchanged
in informal (i.e., personal) situations, in particular outside industrial
supply-chains or supermarket checkout lanes. An alternative to explicit
access control management are RFID privacy systems that provides ac-
cess to tag IDs over time, i.e., only after prolonged and detailed reading
of an item. Such themes can minimize the risk of unwanted exposure
through accidental read-outs, or offer protection during brief encounters
with strangers. This paper describes a spatially distributed ID-disclosure
scheme that uses a (potentially large) set of miniature RFID tags to dis-
tribute the true ID of an item across the entire product surface. We
introduce the underlying mechanism of our spatially distributed RFID
privacy system and report on initial performance results.

1 Introduction

Today’s best protection from unwanted RFID readouts is to completely disable
the tag — either by executing a kill-command [1] at checkout that renders the tag
silent to all reader requests, or by physically clipping the tag antenna [2]. In the
future, however, additional services such as warranty returns and repairs, smart
laundry machines, automated inventories, or electronically augmented everyday
appliances [3] may offer tangible consumer benefits for RFID-tagged items be-
yond the supply chain, which would force consumers to choose between these
novel services and their privacy.

Short of killing tags completely, so far only password-based methods have
seemed feasible for protecting RFID tags from unwanted readouts [4,5,6]." While
their general principle is easy enough for implementation on a tiny RFID tag,

' An excellent overview of RFID privacy methods can be found in [7].

H. Ichikawa et al. (Eds.): UCS 2007, LNCS 4836, pp. 1-16, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 M. Langheinrich and R. Marti

the practical use of such schemes is often challenging. In order to facilitate the
exchange, sale, or return of tagged items, all involved parties must own and
operate reasonably sophisticated information infrastructures that can pass and
receive the individual passwords for each tagged item. In principle, NFC-enabled
smartphones could easily receive such passwords as an integral part of a mobile
phone based payment procedure, but in reality, it will still take many years
before a majority of shoppers will own, carry, and use such phones. Equally
unlikely is the fast spread of corresponding NFC-enabled point-of-sales systems,
as retail-chains would need to add costly upgrades to their systems without clear
benefits to their bottom line, while smaller outlets such as kiosks or newsstands
would need to upgrade their entire procurement, inventory, and sales operations
at costs that could easily dwarf their yearly profits.

A number of password-less alternatives for RFID privacy have since been
proposed, such as Juels et al.’s blocker tag [8], where a specifically engineered
RFID tag causes signal collisions with all regular RFID tags in its vicinity,
effectively preventing their readout. While simple in use, the need for carrying
a blocker tag puts the burden of privacy protection on the user, who looses this
protection should she forget to carry it. Blocker tags are also subject to the same
reliability concerns as ordinary tags, i.e., a suboptimal position in the reader’s
field might not sufficiently power the tag, thus allowing full access to all other
RFID tags. In order to limit the types of deactivated tags, e.g., to only those
belonging to the user, a password management scheme is again needed that
allows configuring regular RFID tags to be protected by a particular blocker
tag. Fishkin et al. [9] instead propose a simple but intuitive distance-based access
control scheme, where tags reply with different levels of detail depending on their
distance to the reader. Apart from the increased costs for the required on-tag
circuitry to reliably detect signal strength, distance-based authentication might
not always yield the desired functionality, e.g., when passing narrow passageways
or small store entrances.

In an ecarlier paper [10], we have proposed a third alternative, called a Shamir
Tag, which neither require costly password management nor error-prone distance
measurements. Using the cryptographic principle of secret shares [11], Shamir
Tags yield virtually no information to casual “hit-and-run” attackers, but only
reveal their true ID after continuous and undisturbed reading from up-close

something that can hardly go unnoticed by an item’s owner. At the same
time, however, the system allows tag owners to use caching for speeding-up this
process, effectively preserving instant item identification in home-automation or
supply-chain applications.

In order to prevent secret long-range scanning with powerful antennas, Shamir
Tags™ antennas will need to be constructed with limited read-out ranges, poten-
tially yielding only a few centimeters of distance for systems operating within
the allowed power levels. This in turn might complicate the readout process also
for tag owners, as tagged items need to be positioned more carefully with respect
to the antenna. This paper presents a multi-tag extension to Shamir Tags, al-
lowing the use of dozens, if not hundreds of miniature tags on the same product,
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thus alleviating positioning problems without the need for increased read ranges.
Our approach is based on the idea of super-distributed RFID tag-infrastructures
(SDRI) [12], where tiny RFID chips are brought out in large numbers, e.g..
mixed into wall paint, woven into carpets or clothing, or sprinkled into an item’s
plastic casing. Thus, instead of having a single RFID tag per item, we envision
items that feature several hundreds of tags, with the item’s ID being spread out
across all tags. Given appropriate communication protocols and antenna sizes,
reading that many tags at once will be infeasible, instead requiring readers to
scan small areas sequentially. While clearly not yet a reality, we believe that
current trends in RFID miniaturization, such as Hitachi’s p-chip,? offer ample
potential for actually deploying such simple but reliable RFID privacy systems
in the future.

The remainder of this paper is structured as follows. Section 2 will briefly
describe our previously proposed Shamir Tags and their underlying principles,
Shamir’s secret sharing scheme and bit-throttling, as well as outline a distributed,
multi-tag variant. Section 3 then presents two extensions that we developed
for using distributed Shamir Tags concurrently, i.e., in a multi-item scenario.
Section 4 will briefly outline the prototype system we built for evaluating our
approach, before we report on the results of initial experiments in section 5.

2 Shamir Tags

Shamir Tags use two principles to protect the true 1D of an item (e.g., its EPC-
code) [10]. Firstly, data readout is performed in two stages using a bit-by-bit
strategy. Initially, a Shamir Tag discloses a small subset (e.g., 5%) of bits to
a reader, which allows owners to quickly identify the entire bit-string from a
small list (cache) of personal items. This is then followed by a steady “trickle”
of bits that reveals the entire ID to the reader only after prolonged reading, e.g.,
several minutes. This allows anybody to eventually identify an item, yet forces
them to stay close enough to the tag during the entire time. This process is
called bit-throttling, and it makes tag-tracking difficult.

However, since industrial code-schemes are often heavily structured, even re-
leasing only a few bits might already disclose sensitive data. E.g., an EPC-header
featuring the combination 10 at the third and fourth position uniquely identi-
fies items tagged by the U.S. Department of Defense [13]. To prevent such data
disclosure, Shamir Tags are additionally encoded using shared secrets. The pro-
cess of creating a shared secret basically re-encodes the tag’s true 1D into n
seemingly unrelated numbers. Only by combining all 7» numbers, the original
ID can be (trivially) reconstructed. Section 2.1 will give some more background
information on this process — for now it suffices to know that this encoding step
basically protects our Shamir Tag from inadvertently disclosing meaningful bits.

2 Hitachi’s current generation pi-chip has a size of less than 0.2 mm?, its next generation
will have only about 0.02 mm?. Also see www.hitachi.co.jp/Prod/mu-chip
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Fig. 1. Principal Construction of a Shamir Tag (from [10]). Based on the tag’s “true”
ID, e.g., its EPC-code, multiple Shamir shares are concatenated to form the tag’'s new
ID, which is then stored on the tag. Upon reader inquiry, an initial set of random bits
is released, with subsequent throttled single-bit releases.

Only after all bits have been rcad (which, due to bit-throttling, may take up to
several minutes) they can be combined into the true ID.3

Figure 1 shows the principal construction of a Shamir Tag from a 96-bit EPC.
In our previous work [10], we have shown that Shamir Tags provide an effective
and cheap protection from unwanted and inadvertent tag readouts. Item owners
can use simple caching strategies to ensure instantaneous identification of their
own tags, while foreign readers will need to have continuous access to the tag for
prolonged amounts of time, in order to read a sufficiently large percentage of bits
from the tag that allows reconstructing the Shamir-encoded true ID. However,
a critical factor of this protection is the effective read range of such tags — if the
read range is too large, attackers can read out tags from several meters away
whenever their owners are not moving fast enough, e.g., in public transport,
or while waiting in line. Reducing the read range by limiting tag antenna sizes
helps to prevent such attacks, yet at the same time complicates tag readout for
legitimate owners, as they will also need to position their antennas very close to

3 Note that if = bits are missing, rogue readers can of course try out all possible
2* combinations to compute 2° potential true IDs, and then use knowledge about
valid EPC values (e.g., allowed manufacturer IDs, or known product IDs) to discard
invalid 1Ds.
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the tag. In industrial settings, or when the exact location of an embedded tag is
not known, this might significantly hamper legitimate tag use.

Our solution to this is — as outlined in the introduction - straightforward:
instead of using a single Shamir Tag with a reasonable antenna range that sim-
plifies tag detection at the expense of long-range scanning protection, we use
dozens, if not hundreds of miniature Shamir Tags, woven into the garment of
clothing, or mixed into the plastic casing of products, that have a much shorter
antenna range but which distribute the item’s (protected) ID more or less evenly
across the entire product surface. However, this approach offers new challenges
for ID reconstruction, which are outlined in section 3 below. But first, we will
briefly give some background on the construction of shared secrets using Shamir’s
scheme in the following section.

2.1 Shamir’s Secret Sharing Scheme

In a secret sharing scheme, each participant receives a share that is a part of
a secret. The secret can only be recovered if enough participants cooperate in
recombining their shares. Schemes that allow a reconstruction of the secret with
only t out of n participants involved are called (t,n)-threshold schemes. They
fulfill the following two properties: Firstly, no subset of participants smaller
than a threshold ¢ can gain information on the secret s, even when cooperating
with each other. Secondly, any subset equal to or larger than a threshold ¢ can
reconstruct the secret s at any time.

One of the most famous (t,n)-threshold schemes was introduced by Shamir in
1979 [11]. Tt is based on polynomials, and in particular on the observation that
a polynomial of degree t — 1 is defined by ¢ coordinate-pairs (z;, y;). To encode a
secret s for n participants with a threshold ¢, one chooses a random polynomial
of degree t — 1 that crosses the y-axis at s. The n participants are each given
exactly one point on the polynomial’s curve, thus allowing any ¢ members to
compute the exact polynomial and thus the y-intercept s.

The reconstruction of the secret is essentially a polynomial interpolation based
on the Lagrange formula. Since only the y-intercept is of interest, it can be
simplified to the following formula (with k being the number of tags read):*

k

s=q0) =y [] —— (1)

=1 1%i<hyidi 4

In practice, computing the secret s given large numbers of shares (e.g., thou-
sands) quickly becomes infeasible. Calculations are therefore carried out in a
finite field modulo p (written as Z,)”, with p being a large prime number. Not
only does this reduce the size of exponents, but it also removes the need for
floating point operations (thus limiting numerical errors).

1 Obviously, computing s with k < ¢ shares is not possible.
® 7, designates the set {0,1,...,p — 1}.
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A comprehensive discussion of this topic is beyond the scope of this paper,
but an excellent introduction, as well as efficient algorithms for solving (1) in
Zp, can be found in [14]. Operating a secret sharing scheme within Z, not only
makes reconstruction of the secret s (e.g., its Electronic Product Code/EPC)
feasible, but also helps with the practical problem of resolving multiple secrets
concurrently. This will be described in section 3 below.

2.2 A Spatially Distributed Shamir Tag

A straightforward implementation of a distributed Shamir Tag would simply
put the individual shares not just on a single tag, but distribute them among
multiple tags on (or in) an item. As Shamir’s scheme allows the reconstruction of
the secret irrespective of the order of the shares, no special order would need to
be observed when reading shares off the individual tags. Bit-throttling could also
still be used, as each tag would choose a random temporary ID during readout,
allowing a reader to group bits from the same share properly together. In order to
make use of caching [10], however, bits would need to be continously numbered
across all tags, in order to have a defined order. Note that this would not decrease
the level of protection compared to a single Shamir Tag, as this simply orders
the distributed bits just as in the non-distributed (i.e., single-tag) version — this
would simply increase per-tag storage requirements, as each distributed share
would need to also store its original position within the Shamir Tag.

By properly adjusting the threshold parameter ¢, defective or detuned tags
could be tolerated. This also adds flexibility to the readout process, as only
part of an item’s surface would need to be scanned.® Just like in the single-
tag case, a reader would gradually assemble the set of tags and their IDs in
an item and repeatedly compute the secret s until a stable y-intercept had been
found. Obviously, the overall disclosure-delay of a single tag could be significantly
shortened, as the spatial distribution of the shares combined with the shortened
read range of individual tags introduces an additional delay during readout.

3 Distributed Multi-item Identification

The approach described in section 2.2 above works well as long as only a single
item/ID at a time needs to be reconstructed. However, once multiple items are
within the reading range of the antenna, interpolation points from two or more
polynomials would get mixed together that would never converge on a stable s
value (nor yield multiple values for the different items). Since the Shamir scheme
has no means of differentiating points from different polynomials, we will need
to extend it if we want it to support decoding two or more secrets concurrently.

% The ratio between t and n could be adjusted individually for different products,
depending on the envisioned privacy degree: a threshold ¢ close to n requires many
tags to be read, a small ¢t allows the reconstruction of the secret s already with a
small subset of tags.



