SOFTWARE
LIFECYCLE
MANAGEMENT

- THE INCREMENTAL MET|

\f

Software Lifecycle

Management:
The Incremental Method

William C. Cave

Prediction Systems, Inc.

Gilbert W. Maymon

Electronic Associates, Inc.

Macmillan Publishing Company

A Division of Macmillan, Inc.
New York

Collier Macmillan Publishers

London

Copyright © 1984 by Macmillan Publishing Company,
A Division of Macmillan, Inc.

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission
in writing from the Publisher.

Macmillan Publishing Company
866 Third Avenue, New York, NY 10022

Collier Macmillan Canada, Inc.
Printed in the United States of America

printing number
12345678910

Library of Congress Cataloging in Publication Data

Cave, William C.
Software lifecycle management.

Bibliography: p.

Includes index.

1. Computer programming management. 2. Software
maintenance. 1. Maymon, Gilbert W. II, Title.
111. Title: Incremental method.
QA76.6.C39 1984 001.64'2'0685 84-11264
ISBN 0-02-949210-6

Software Lifecycle
Management

The Macmillan Database/Data

Communications Series
Shaku Atre, Consulting Editor

Available
Cave/Maymon Software Lifecycle Management
Fadok Effective Design of a Codasyl Database

Forthcoming
Brown/Geelen Data Modeling in a Business Environment
Bubley Data Communications Systems
Callender An Introduction to PSL/PSA
Cohen A Guide to DBMs for Microcomputers
Crout Designing Better Systems for Endusers
Fields The DP/User Interface Conflict
Ha Digital Satellite Communications
Musteata How to use CICS Languages to Create On-Line Applications
Myer Global Communications: A Computer-Based Message System
Approach
Potter Local Area Networks: Applications and Design
Ranade/Ranade VSAM: Multiprogramming with Virtual Storage
St. Ammand A Guide to Packet Switched Value Added Networks
Towner The ADS/On-Line Cookbook

To our wives
Margaret Cave
Lois Maymon

Preface

There was a time when computer programs were used primarily by the
programmers who wrote them. A 16K word machine was considered very
large, transistors did not exist, and neither did the term “software.” Today,
with the advent of timesharing and the personal computer, millions of
people can use the same computer programs (software). Machines with
millions of words of memory can sit on a deck like a typewriter, and their
users easily can access trillions of additional words of data over standard
telephone lines. The transistor as a separate circuit element has come and
gone, replaced by whole computer processors. One wonders if the field of
software will move as fast as that of computer hardware.

The driving force behind the rapidly moving field of computer hard-
ware today is simply economics. It is a highly competitive environment,
one in which the survivors give the customer the best price for a desired
amount of computing power, in a form that is “user friendly.” In fact, user
friendliness is fast becoming the most important requirement in the
computer field—and this is where software can take on the growth pattern
of hardware.

Just as semiconductor companies make greater profits in producing
products that are directly useful in a broad market, so can software
companies. However, this requires the realization that the end-user
environment is significantly different from the development environment.
Judgmenis on what the end user really wants must be made in close
concert with those who represent the market. Users will expect toreceive a
product they can easily use directly, without help or a significant learn-
ing process.

xi

xii Preface

To cut the costs of supporting such a market, developers must be able
to deliver systems from a distance, through standard distribution
channels, without much (if any) direct contact with the customer. This
requires that the software product be of high quality, both from auser and
support standpoint. The software features must be easily understandable
and available—on a user-friendly basis. The software must be designed to
be readily supported and, in particular, easily enhanced with new features
and functions. A good piece of software has a life expectancy of 15 to 20
years. It never dies. It just grows and grows!

The incremental method represents a pragmatic approach to
managing the development and support of user-oriented software
products over their lifecycles. It represents an attempt to organize and
integrate a number of concepts and techniques that have evolved in the
successful development of a number of large software products. We are
presenting no new material. To the contrary, we have tried to sift out and
use only those methods that have proved successful as gauged within a
competitive software vendor environment. Unproven approaches do not
fit this context. They typically carry a great risk of failure and should be
avoided in a production environment. And that is what this book is about.
It is aimed at helping software product managers to maximize their return
on investment in software assets, while keeping risk at an acceptable level.

Contents

PREFACE xi

CHAPTER 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

CHAPTER 2
2.1
2.2
2.3
2.4

CHAPTER 3
3.1
3.2

CHAPTER 4
4.1

Gaining Management Perspective 1

The Incremental Method 1

Types of Software Projects 2

A Reference Frame for Scoping Projects 4

Defining the Software Lifecycle Control Problem 5
Determining Software Quality 10

Measuring Success in a Competitive Environment 11
Structure and Definition of the Software Product 13
A Typical Product Case History 14

A Custom System Contract Case History 18

The Incremental Method 20

Elements Essential to Success 20
Establishing Control 22

Maintaining Contirol 25

Benefits of the Incremental Method 28

The Management Plan 31
Introduction 31
Incremental Development Phases 31

Project Definition 43
Overview 43

vii

viii Contents

4.2 Problem Definition 44

4.3 Sample Problem Definition 45
44 Project Planning 47

4.5 The Incremental Plan 50

4.6 Sample Initial Project Plan 51

CHAPTER 5 System Functional Analysis and Specification 63
5.1 Introduction 63
5.2 Background Rationale 64
5.3 Initialization 65
5.4 First Pass 66
55 Second Pass 67
5.6 Documentation 68
5.7 Finalization 69
5.8 Functional Specification Document Standards 70
5.9 Preliminary Operational Concept 71
510 General Requirements 72
5.11 Preliminary Documentation Set 74

CHAPTER 6 Documentation 75
6.1 Introduction 75
6.2 Background Rationale 76
6.3 External Documentation Outline 77
6.4 Management Planning and Milestones 80
6.5 Procedures Manuals 81
6.6 Technical Support Documents B85
6.7 Interface Specifications 91
6.8 Revision Process 93
6.9 Source Listings 94

CHAPTER 7 Programming Standards 95
7.1 Background 95
7.2 Overview 96
7.3 COBOL Standards 97
7.4 FORTRAN Standards 104
7.5 Summary 107

CHAPTER 8 Software Testing and Quality Control 108
8.1 Introduction 108
8.2 Background Rationale 109
8.3 A Measure Of Software Quality 110
8.4 Software Testing and Quality Control Planning 112
8.5 Testing Techniques 120

CHAPTER 9

9.1
9.2
9.3
9.4

8.5

CHAPTER 10

10.1
10.2
10.3
10.4

REFERENCES

167

Contents

Software Product Support 126

Introduction 126

System Action Requests 126

Software Functional Organization 128
Operations And Procedures: The Product Support
Cycle 135

Product Maintenance 144

The Software Environment 155

Introduction 155

Software Organization 156

Software Technical Environments 159
Software Development Tools and Facilities 161

164

CHAPTER 1

Gaining Management
Perspective

1.1 THE INCREMENTAL METHOD

When people invest money in stocks, mutual funds, and money markets,
return on investment (ROI) is scrutinized carefully. Managers of such
funds try to ensure a high probability for returning good profits along with
capital. This same measure of success underlies large construction
projects, including investments in new plants and new equipment.
Because most people are willing to take greater risks with other people’s
money, income for contractors and managers of such projects must be
based on performance, thereby reducing the purchaser's risk. When
tomorrow’s budgets depend on today’s project successes or failures, great
heed must be paid to the size of risks incurred.

Software companies that build and sell packaged products must
carefully scrutinize the probability that profits will be returned on their
investments. Management must carefully assess the risk of converting
capital assets (which are usually scarce) into software assets that do not
generate a profit. Herein lies the problem. The complexity of software, its
intangible nature, and the fact that it helps implement user policy makes
measuring and controlling the risk very difficult.

2 Gaining Management Perspective

The incremental method of risk management provides a framework
for partitioning software projects into “risk increments,” with resources
committed on a correspondingly incremental basis. The size of each
increment is determined by two considerations:

o The size of each resource commitment must be commensurate with the
degree of risk associated with the work to be done.

e When resources are expended and the work increment completed, the
risk of project failure must have been lowered accordingly.

Risk can be quantified by defining it as the probability of not reaching
a point where revenues (or savings) will exceed expenditures; it can be
defined as the probability of exceeding budgets to the extent that the
project is considered a failure; or it can be defined as the probability of
having management consider the project a failure.

The incremental method responds to the cbservation that certain
software developers have been consistently more successful than others.
As used here, “success” is the delivery of a quality product, on time and
within budget, that results in a high degree of user satisfaction. The key
parameter for measuring project success is obviously user satisfaction, but
when user requirements force cost estimates to exceed budget constraints,
it may be necessary to relax either user requirements or budget con-
straints, or to halt the project. In any case, the decision to continue a project
under uncertain terms places the responsibility for failure on management.
It is essential that management provide step-by-step decision points at
times when halting the project causes minimal loss of resources and
continuity (especially if continuation can be justified at a later time).

The incremental method provides specific procedures and standards
for reducing risk of project failure as resources are invested across the
software lifecycle. The method applies to the development of automated
systems in which software is a major component along the critical path. It
is particularly applicable to systems involving a high degree of human
interaction. The objective of the incremental method is to prepare
managers for the opportunity to develop major software systems with an
approach that will markedly increase the probability of success.

1.2 TYPES OF SOFTWARE PROJECTS

Software projects are generally spawned from external product-request-
ing sources. The request typically specifies one of two types of systems:
custom systems or product systems.

1.2 Types of Software Projects 3
Custom Systems

A custom system is generally a one-of-a-kind software system specifically
requested via a request for proposal (RFP) from a source outside the
software development group. Typically, a contract to develop the system
is agreed on after a competitive bidding process in which the prospective
developers present proposals for solving the problem. For custom systems
the developer must carefully analyze all of the requestor’s requirements to
ensure a reasonable profit margin and provide a clear understanding of all
continuation or support obligations. A sophisticated requester usually
provides such expectations in the RFP.

Product Systems

A product system is one that will be sold many times. The requesting
source for such systems is generally the developer's product research
department. The company’s internal-marketing or product-planning orga-
nization issues a product proposal that describes, in general terms, the new
product’s characteristics, its place in the company’s overall product line,
and its relationship to, or advantages over, competitive products. The
basic purposes of the proposal are to demonstrate a need or opportunity to
general management and to secure commitment of the resources necessary
to develop the product. The proposal specifically contains the following
information.

1. A brief functional description of the proposed product in terms of
customer needs satisfied

2. A general statement of the target market, the company’s current
position in that market, and the benefits to be derived by develop-
ing the proposed product.

3. A summary analysis of major competitors and their products
currently offered, or anticipated to be offered, to the target market

4. A development strategy including resource needs and cost require-
ments, timing requirements for introducing the product to the
market, effects on existing company product lines, pricing require-
ments for amortization goals, and market introduction plans

The incremental method, in this case, applies to the process of justifying
and obtaining the initial funding from general management so that the
developing organization can produce a problem definition and project a
development plan. The company is not committing itself to a full-blown,
long-range development program at this time, with all of the risks and
uncertainties such a commitment entails; rather it is making a modest

4 Gaining Management Perspective

investment to determine the feasibility of pursuing the development. If this
initial phase reveals the product to be ill advised or impractical, little has
been lost, and an expensive disaster has been avoided.

Although this book generally discusses the software product lifecycle
(the second type of system described), the incremental method applies
equally well to custom systems.

1.3 A REFERENCE FRAME FOR SCOPING PROJECTS

The economics of any product lifecycle depends both on the development
environment and the operational (user) environment. In the case of
software, the scope of problems encountered in each environment varies
considerably. Software systems vary according te numbers of field
installations, types of users, previous experience of both users and
developers, complexity of the system due to size (e.g., number of pro-
grams, files, and so forth), and the research and development efforts
required to solve technical problems.

We need a frame of reference for scoping software projects because we
want to be able to estimate as accurately as possible the size of planned
projects. Furthermore, we would like to look back at past project successes
or failures and be able to draw accurate conclusions regarding the
decisions made and value of methods used.

The reference frame used within the incremental method classifies a
project according to the following dimensions:

Quality of the software product: requirements on system functional
availability, reliability, and ability to respond to problems

Support requirements: number of geographically separate installa-
tions to be supported

User orientation: numbers and different types of users expected to
interact with the system

Prior history: history of prior automation experience with the
particular application, and difficulties encountered

Degree of complexity: number of programs, individual program com-
plexity, and hardware complexity

Clearly, developing a single program for use by one person is far
different from developing a multifaceted system for many users expecting
a high-quality product at many different installations. In addition, the
software developer often must contend with the parallel problem of
educating inexperienced users while the software is being specified and
introduced. Well-prepared, experienced management is essential in deal-
ing with such situations.

The quality of a software product depends on the availability of
system functions required by the user and the cost of maintaining that

1.4 Defining the Software Lifecycle Control Problem 5

availability. Naturally, the developer constantly tries to “predict” and
“control” quality from the inception of the system lifecycle; however, in
practice the final measure of quality cannot be determined until the system
is in the hands of users in operational installations.

In a multiple-installation environment, requirements for system
availability and supportability are of major importance. As the number of
installations and corresponding support costs rise, reliability and support
requirements multiply. The nature of the support environment amplifies
the need for design quality. Add to this a competitive requirement of
satisfying user needs under warranty, and the result is an environment
that places the highest demands on product quality and formal manage-
ment control. In the commercial software vendor environment, it is
difficult to sell software products without long-term warranties. Further-
more, Japanese producers are gearing up to compete. The Ministry of
International Trade and Industry (MITI) has formed a review board that
issues 25-year warranties on software. This competitive arena is the
principal environment addressed by this book.

1.4 DEFINING THE SOFTWARE LIFECYCLE
CONTROL PROBLEM

To start, we consider a graphical description of the lifecycle control
problem. The top curve in Figure 1.1 shows rate of expenditures (dollars
per month or per year) and represents resource consumption for a software
product (see Norden, 1970). Assume that the rate of revenues or savings
(bottom curve) can be measured in the same way as are resources con-
sumed (dollars per month or per year). From this one can derive a clear
measure (dollars and cents) of the return on investment (ROI) that can be
achieved.

Such a measure can be precisely determined for a software vendor
marketing a package product. This measure is also valid for products in
which savings can be clearly determined. In cases where these measures
are not so clear, there appears to be little doubt that the incremental
method is directly applicable, although its evaluation may be more
subjective.

The curves shown in Figure 1.1 provide a graphical representation of
the software lifecycle control problem. This graphical representation is a
general one because, for a given software problem, there can be an infinite
set of possible curves. The curve’s actual shape depends on judgments of
the project manager as well as on many other factors across the lifecycle.
The technical problem objective is to shape these curves in such a way as
to maximize ROL

Managers of large software projects must face many external con-

6 Gaining Management Perspective

ﬁ $ Rate of Expenditures Changing
Environment
I
ac Technology
BEP SOB
(Resource <
Consumption) I R
L L 1 . i [i £
T LN 1 T)
(Revenues or Savings) TIME
% $ Revenues/Savings Rate

I0C — Initial Operational Capability
MRC — Maximum Resource Consumption
BEP — Break Even Point

SOB — System Obsolescense

Figure 1.1. The Software System Lifecycle.

straints. First, managers must determine the time period during which a
market for the product is expected. In other words, they must determine
the period during which revenues for the system will flow or savings will
accrue. They must consider the changing environment, changing technol-
ogy, competition, and the fact that at some time in the future the technology
or market requirement will become obsolete.

If a market already exists for the system, the start of revenues, or
initial operational capability (I0C}, will depend only on development time
to achieve the goal. The period for revenues is bound by IOC and system
obsolescence (SOB). Obviously, if more money is spent up front to shorten
the time to IOC, revenues will begin to come in earlier. However, the
experienced project manager is aware that there is no even dollar-for-
dollar tradeoff, and, in fact, the cost to do things faster can rise
exponentially.

Other external financial constraints that must be considered are
maximum resource consumption (MRC) and break-even point (BEP).
MRC occurs when current (for example, monthly) revenues or savings
exceed current expenses. Enough financial resources must be available at
the rate required to cover those utilized to MRC. If this point is not
estimated properly and, consequently, never reached, the project can
terminate because of lack of funds. BEP occurs when total expenses have
been recovered via revenues or savings. Vendor profits cannot be realized
until this point, except through long-term capitalization of the up-front
peak costs. In any event, a vendor facing many years to BEP, will be
considering other places to invest resources.

