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'PREFACE

THE GNAL OF THE ATIMS series, of which this is the first monograph, is to
_provide texts in areas of intense current interest for graduate students and
newcomers to the field, which will take the reader from the level of first-
year graduate coursework to some of the frontiers of modern research. It is
intended that the monographs be written by active researchers in the field and
that they give a clear introduction to, and a unified picwure of, the subject. No
monograph is intended to be a tome, the final word. Such a goal is impossible
in rapidly moving fields for two reasons. First, rescarchers snmply do not have
the time and, even if they did, the final word would no longer enjoy that status
one year later. ATIMS therefore has introduced a novel concept. Monographs
that prove to be popular will be updated at regular and appropriate intervals
(e.g., three years). In this way, the successful monograph will evolve into a
definitive treatise.

The first monograph in the series is about Nonlinear Optics, the study of
how high-intensity light propagates through and interacts with matter. Itis a
subject so scientifically rich and technologically promising that it is destined
to become one of the most important areas of scientific research over the next
quarter-century. The book is written for graduate students and the newcomer
to nonlinear optics, or anyone who wants to get a unified picture of the whole
subject. It takes the reader from the starting point of Maxwell’s equations to
the frontiers of modern research in the subject.

The modeling—how one pictures light and mattéer—and the mathemati-
cal methods.are cxplained clearly and in great detail. In particular, the book
starts from the point of view that light and matter each can be viewed as
systems of oscillators, and the coupling between these oscillators is relatively
weak. Essentially, the oscillators of light are plane electromagnetic waves
and those of matter are electronic transitions, molecular vibrations and ro-
tations, and acoustic waves. In semiconductors, which are not covered in
this first edition, they are Bloch wavefuncti€ Because of weak coupling,
we show how all the fast time (10~13 second)#nd space (10~ meter) scales
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e : : PREFACE

can be removed from the description of the interactions and how one is then
left with well-known universal and canonical gquauons such as the coupled
mode equations (useful for switches and in situations where linear and non-
linear birefringent effects are important), the nonlinear Schrédinger equation
(useful for fiber optics and nonlinear waveguides), the three- and four-wave
interaction equations (useful for understanding Raman and Brillouin scatter-
ing and phase conjugation), the Maxwell-Bloch equations (useful for lasers
and understanding optical bistability), the Maxwell-Debye equations (for de-
scribing delayed response in transparent materials), the sine—Gordon equation
(useful for describing the propagation of light pulses through active media),
and the complex Ginzburg-Landau equation (useful near the onset of lasting
action).

The material is best taught in a year-long course. Students should have
some familiarity with mathematical methods, Fourier series and Fourier inte-
grals, elementary [ ex variables, elementary ordinary and partial differ-
ential equatigns? %nd vector calculus and should have had a course (undergrad-
uate 18 sufficient) in electromagnetic theory. Chapter 6, “Mathematical
Computaugnalﬂ’cthods,” should be read concurrently with many of the
sections in the other chapters. The correspondence between this chapter and
the M chapters is indicated by the number contained in square brackets after
the listing of each scction in the table of contents. Important cross-reference
sections are also indicated after the section headings in the text proper. A one
semester course might cover Chapter 2, Chapter 3, Sections a, c—g, Chapter 4,
Sections a—-d, Chapter 5, Section a, b together with the relevant material from
Chapter 6 including the uses of numerical simulations.

We begin in,’L‘hapt’er 2 with the propagation of light beams in weakly
nonlinear (Kerf) media and, using elementary mathematics and heuristic
arguments, introduce the:yreader to the notion of linear and nonlinear refrac-
tive index, mtensny-dq}endent phase modulation, wavepackets, dispersion,
diffraction and the. petflinear Schrodinger (NLS) equation. This is followed
by a discussion of linear and nonlinear birefringence and three- and four-
wave mixing. By the end of the first chapter, the reader will have met some
of the most important equations describing propagation in passive nonlinear
media and encountered some of their most important properties. Chapter 3
discusses communicatioh ifi optical fibers using nonlinear pulses (solitons) as
information bits and the ‘reflection and transmission characteristics (Snell’s
or Descartes’ laws) pf light beams at the interfaces of-different nonlinear
dlelcétncs. To this point, matter has played a more or less passive role. The
effects of delay and field ﬂptensxty are included through the use of a frequency-
and intensity-dependent refractive index. In Chapter 4, the oscillations of
matter become active field variables, and we derive the Maxwell-Bloch and
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PREFACE

Maxwell-Debye equations from first principles. The basic mechanisms of
Raman and Brillouin scattering are introduced. Chapter 5 is about appli-
cations, lasers, optically bistable cavities, co- and counterpropagating beam
interactions, coherent pulse propagation in inhomogenously broadened me-
dia, and finally Raman and Brillouin scattering.

We thank the Air Force Office of Scientific Research for their continuing
support of the Nonlinear Optics Program at the Arizona Center for Mathe- ..
matical Sciences. We also want to thank our colleagues Rob Indik, Alejandro
Aceves, Jocelyn Lega, P. Varatharajah, John Geddes, Simon Wenden, and
Claudia Rohner for discussions and help in proofreading and Linda Wilder
for doing a superb typing job. The book is dedicated to Els and Tish, good
companions.
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Chapter 1

INTRODUCTION

-

General Discussion

MAXWELL’S THEORY OF ELECTRIC AND magnetic fields and his idea that light
is an electromagnetic wave were some of the great milestones of scientific
thought, and unified understanding of a large and diverse set of phenomena.
Indeed, by the late nineteenth century, the success of the classical elcctromag-
netic theory of light led some to believe that there were few new fundamental
discoveries to be made. This smug complacency was soon shattered by the
inability of the wave theory to explain several observations: radiation spec-
tra, the photoelectric effect, x-rays, radioactivity. These effects could only be
understood by reviving the idea of the corpuscular nature of light, not in the
original form conceived by Newton, but in a way that was compatible with the
considerable success enjoyed by the classical yave theory. Out of this effort,
modern quantum theory was born, and optical s¢iédce settled once again into
the complacency of a solved science. Rapid progress was made. The accu-
racy of the geometrical optics approximation, together with the linearity of
the equations, which meant that complicated solution fields could be built by
the linear superposition of much simpler solutions (e.g., plane waves), played
important roles in this development. The amplitude of the electromagnetic
field seemed to matter little. .

There were, of course, rumblings, suspicions. Double refraction in
isotropic media (which we will call nonlinear birefringence) and the Ra- %

man effect, in which a scattered wave whose frequency was the sum or

difference of the frequencies of an applied field and a natural medium vibra-
tion, could not be explained on a linear basis and were indicators that the
field intensity was perhaps important after all, but, for the most part, optics - - -

1 -
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1 INTRODUCTION

seemed to be a linear science. Where were the “far from linear” behaviors
so richly manifested in other fields, the magnificent ferocity of a twenty-foot
breaking water wave, the shock-wave boom of a supersonic jet, the majestic
and thunderous cumulus cloud, the sudden implosion of a compressed shell,
the surge of current in vacuum tubes at a critical applied voltage? They were
there, all right, but were hidden because of the relatively low intensities that
occurred naturally (e.g., sunlight, 600 volts per. meter) or could be attained in
the laboratory. Each was so much less than the binding fields of the hydrogen
atom (10!! volts per meter) that it looked like the nonlinear tiger in optics
would be forever contained. .
The discovery of the laser in 1960 (an acronym for light amplification by
stimulated emission of radiation), which was the natural lightwave analog of
the maser (substitute “microwave” for *light™) developed in the early 1950s,
changed all that. Now available was a source of highly coherent radiation that
could be concentrated and focused to give extremely high local intensities
(the latest laser pulses have peak intensities of up to 10'® watts per square
centimeter!). The nonlinear tiger was released from its cage; a rich stream of
fundamental new phenomena, plus several new manifestations of phenomena
familiar from other fields, soon followed, and that stream continues to flow,
becoming richer by the day. The relatively young subject of nonlinear optics,
the study of how high-intensity light interacts with and propagates through
matter, is so scientifically fertile and technologlgally promising that it is
destined to be one of the most important areas of science for the next quarter
century. . _
The field of nonlinear optics is partially driven by anticipation of enor-
mous technological dividends. Already the use of lasers in modern technol-
ogy is commonplace, ranging in application from high-density data storage
on optical disks to greatly improved surgical techniques in ophthalmology,
neurosurgery, and dermatology. Howeve, for future uses, more sophisticated
understanding will be required. Lasers are not the stable output intensity de-
vices suggested by the simple models. In reality, they are highly complicated
dynamical systems, which can display the full range of dynamical behavior,
from the staid to the exotic, from fixed-point attractors to chaotic attractors,
and the nature of this complicated behavior needs to be categorized and under-
stood. The coupling of lasers is also important, in particular in semiconductor
devices where hundreds of miniature lasers can be fabricated on a single sub-
strate, providing in principle the capability of coherent high power output
from a compact solid-state laser. But how will these arrays work in practice?
Can they indeed be coupled in such as way as to give a phase-locked and
coherent output? Nobody really knows. Preliminary models suggest that in
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many parameter ranges, the array will not behave as a single coherent unit
but will display a rich mosaic of spatiotemporal patterns.

Nonlinear optics is also likely to revolutionize future telecommunica-
tions and computer technologies. The relatively long interaction lengths and
small cross-sections available in waveguide and fiber materials means that
low-energy optical pulses can achieve sufficiently high peak intensities to
compensate for the intrinsically weak nonlinearities in many transparent op-

. tical materials. Today, using linear propagation methods, information races
across continents and oceans on optical fibers as thin as a human hair at rates
of gigabits (10° bits) per second. There is every indication that within the
decade, the linear technology will be replaced by a nonlinear one in which
trains of light pulses are transmitted as solitons. The enormous bandwidth for
data transmission afforded by optical fibers allows much scope for original
ideas on all-optical controlled multiplexing (integrating bits of information
carried on different channels or wavelengths) of data bits represented as soli-
ton envelope pulses containing light at different wavelengths in a single fiber.
Directional couplers, which exploit the overlap of evanescent tails of trans-
versely guided field profiles, can switch soliton pulses from one fiber to its
neighbor precisely because of the soliton’s coherenice. The semiconductor
laser arrays mentioned earlier may well serve as the pump sources for the
pulses used in optical fibers. They are also possible candidates for the power
sources in all-optical signal processing and computing devices. The ultrafast,
massively parallel (i.e., laser beams do not interact in free space), and global
connectivity features make optical architecture an attractive alternative for
computation. This architecture will likely exploit bistable behavior in optical
feedback systems, such as ring and Fabry—Perot cavities, as the basic logic
element. Lasers, communications, computing, image storage, beam cleanup

. the list of opportunities for useful applications of nonlinearity in optics
gocs on and on.

It is an ideal subject for the theoretician interested in nonhncar behavior
and model building who is particularly well positioned to make major contri-
butions to the development of the subject. First, it is incredibly diverse in that
it displays the full spectrum of behavior associated with nonlinear equations,
three- and four-wave resonant interactions, self-focusing, the development of
singularities and weak solutions, solitons, pattern formation, phase locking,
strange attractors, homoclinic tangles, the full range of bifurcation scenarios,
turbulence—all familiar to the theoretician in a variety of contexts. Second, *
modeling or the art of the judicious approximation, the skill to recognize and
then transfer ideas that run parallel in other fields, and the ability to see how
the parts fit into a unified whole are key ingredients for success. Third, sev-
eral new concepts of nonlinear science, including the soliton and the strange
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attractor, representing ideals at the opposite ends of the spectrum of dynam-
ical behavior, are often encountered and require some depth of mathematical
knowledge to understand. The soliton was discovered, with-the aid of the.
computer experiment, by the mathematicians Kruskal and Zabusky, and we
shall see in this book how this robust object is likely to play an ever-increasing
role in propagation in fibers, surface waves in nonlinear dielectrics, switching
in waveguides, optical bistability, and propagation through inhomogeneously
broadened resonant media. The strange attractor was discovered by Lorenz,
an atmospheric scientist with a distinctly mathematical bent, and developed
as a fundamental concept in the théory of dynamics of dissipative systems by
Ruclle and Takens. This idea, together with a revolution in our understanding
about the nature of finite and low-dimensional dynamical systems, has had
and will continue to have a broad impact, particularly in optical feedback de-
vices such as lasers. Last but not least in the arsenal of tools the theoretician
brings to bear are the techniques of modern computer simulation. Ideas and
theories can be tested throughout whole parameter ranges, and quantitative
support can be given to complement the qualitative understanding obtained
through the use of general arguments and simple models,. These attributes
and tools, when combined with physical intuition and the keen realist’s eye
of the experimentalist, are and will continue to be the engines that drive the
subject’s development.

What do we mear when we use the word nonlinear or talk about nonlinear
science (optics, mechanics, physics, waves, etc.) as a subject? The literal
meaning “pertaining to things not linear” is not really satisfactory because it
defines a subject by what it is not; and on the surface it has about the same
degree of vagueness as a description of all American animals as “nonele-
phant.” It would iiclude all relations between quantities the graphs of which
are not straight lines, and this iffterpretation covers many natural phenomena.
Nevertheless, although it is difficult to come up with a precise definition, one
can clearly indicate what the word and subject connote. ‘In the section that
follows, we discuss briefly the ingredients that make nonline:r systems so
different. Generally one finds that the solutions or output data of nonlinear
systems display behaviors that depend very sensitively on input data and pa-
rameters, and it is therefore very difficult not only to obtain expressions for
the former in terms of the latter but cven to gain any understanding using only ‘
analytical methods.

How is it, then, that nonlinear optics is so accessible to theoretical anal-
ysis, especially when compared to other branches of nonlinear physics? The :
key reasons are that (1) at currently available light intensities, the nonlinear :
coupling coeflicients are small, and (2) the power spectrum of the electromag- *
netic field is concentrated in the neighborhoods of discrete frequencies. These
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properties allow one to remove all fast space (10~ m) and time scales (10'* 5)
from the equations using standard perturbation techniques, and this leads to
considerable simplification. To a first approximation, light and matter can be
considered as a system of uncoupled oscillators; light consists of wavetrains
exp i(E . £ — wt) while the oscillators of matter are electronic transitions,
molecular vibrations and rotations, and acoustic waves. Therefore, to a first
approximation, the variables of light and matter obey linear equations and
the nonlinear terms are an order of magnitude smaller. This does not mean
that they have negligible long-time and long-distance effects. “Weak coupling
does mean, however, that only certain identifiable subsets of all possible lin-
ear and nonlinear interactions between the oscillators are important, namely
the small number of sets that satisfy special resonance conditions. Because of
this, the fields can be accurately approximated over long times and distances
by a finite combination of oscillator modes, namely those modes that take
part in resonant interactions. The loss of energy to the many other degrees
of freedom can be accounted for by attenuation terms (called homogeneous
broadening) that are linear in the matter variables. Further, since the spectra of
the electromagnetic and matter fields are localized in wavenumber-frequency
space, the fields can be represented as finite sums of discrete wavepackets,
A(z,y,7,t)expi(lz + my + kz — wt) + (), where # is the complex con- -
jugate, the wavevector components (I, m, k) are related to the frequency w
through the dispersion relation, and the amplitude A(z, ¥, 2,1) is a slowly
varying function of space and time, that is, 82A4/9t> &€ wdA/0t < WA,
82A4/822 € k8A/0z < k®A. This means that the envelope A of the
wavepacket obeys an equation containing only low powers of the derivatives
d/0t, 8/0z, /8y, 8/vz. Typically, the basic time and distance units for
light waves in the visible range, 27w~ and 2k~ are of the order of a fem-
tosecond (fs, or 10~13 s) and a micrometer (um, or 10~ m) respectively. The
times ov~- which the amplitudes vary lie in the range between nanoseconds
(ns, or 10~ s) and picoseconds (ps, or 10~ 12 5), comparable to the inverse of
the magnitude of the coupling coefficient or the width of the wavepacket.

A principal goal of theory is to write down envelope equations for these
amplitudes. These equations are nonlinear, but they often fall into categories
of nonlinear equations about which much is known. Whereas in Chapters 2,
3, and 6 we introduce the standard perturbation procedures for deriving them
from the governing Maxwell’s equations, one can readily deduce what the
inviscid or frictionless form of the envelope equations must be by applying
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simple symmetry arguments. For éxample; suppose one-is following the
evolution of a single wavepacket

E(Z,t) = 8( A, t)cxpi(l?-:i:’—wt)+*), Z=(z,,2), lc_(l n'(z,k),
, 1.1)

4in a nonlinear dielectric with a ccntmsymmemc crystal structure (the crystal
has reflection symmetry about the origin) so that if E(Z,1) is a solution so
is —E(2, t). Therefore, if A satisfies the envelope equation, so does: -A.
The equatmn for E(Z, t), derived directly from Maxwell’s equations, has the .
additional pmpemu of space and time reversibility and translation, meaning
that if E(i‘ t) is a solution, so are E(—2,—t) and E(Z + Zo,t + to) for
arbitrary £, to- The last two properties mean that if A(Z,t)isasolutionof the
equation which the envelope satisfies, so are A°(—2, —t) and A(Z, t) expido
for arbitrary constant ¢y. In addition, the fact that we are. dealing with
" weak nonlinear coupling of long wavepackets means that the equation for
the amplitude A is a multinomial expansion in powers of 4 and the gradient
V(8/0z,8/8y,8/0z) and time derivative 8/t operators. To leading order,
the only nontrivial candidate satisfying all these properties must be a real,
linear combination of 84/8t, V A, i times all possible second derivatives, 1 4,
and 1| A|?A, precisely the terms that compose the universal and ubiquitous
nonlinear Schridinger (NLS) equation. If A is constrained to depend on one
direction only, as in a light fiber, its equation will be

BA 04, ,,8’A (AR
S tES 2k 7~ i kA=0,  (12)

with the refractive index correction én/n given by the first two terms a + -
b| A|? in a Taylor expansion in the field intensity and where the coefficients
k, k', and k" all have a very natural interpretation. In Chapter 2, we show
that the operator that gives rise to the multinomial is simply the dispersion
relation, namely the equation that relates the wavevector K, frequency w,
* and intensity | A]* of a nonlinear wavetrain. Equation (1.2) is the one-
dimensional NLS equation (the dimension of the NLS equation is defined by
the number of variables appearing as second derivatives), which has very
special mathematical properties reflected in a wonderful class of solutions
called solitons. The soliton is to nonlinear science what the Fourier mode is
. to linear science, namely a fundamental “normal” mode of propagation of a
nonlineaf system, and we have much to say about it in this book.
Is it a fluke that many of the equations of mathematical physics like
‘the NLS equation or the Korteweg—de Vries equation or the sine-Gordon
equation, which are derived by standard perturbation analyses as the universal
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asymptotic description of a wide variety of physical systems, are integrable or
close to being integrable? We don’t know the answer to this, but the following
comment may be relevant. A key observation is that if one starts with an
exactly integrable system, then the asymptotic analysis leading to the equation
that describes the long-time behavior of the envelopes of special types of
solutions does not destroy this integrable character; rather, the integrability
is preserved. Therefore if among the set of all equations that reduce to the
same asymptotic description there is one equation that is integrable, then
the asymptotic equation is integrable. Therefore whereas integrability is
rare in general, the process of reduction to universal, asymptotic equations
for wave envelopes increases the probability that the resulting equation has
special properties. The reduction process introduces new symmetries and
new constraints (conservation laws) and does not destroy existing ones.

For the most part, therefore, the theorist can gain access to nonlinear
optics by decomposing the relevant field variables into a finite basis of weakly
interacting wavepackets, and the evolution of the field is obtained by following
the fully nonlinear evolution of the wavepacket envelopes, which equations,
because of symmetries and their universal nature, tend to have rather special
properties. Being able to get off the ground with a finite linear basis is a luxury
denied to most other areas of continuum physics, like fluid mechanics for
example, in which nonlinearity is strong and for which in most circumstances
it is impossible to neglect any higher-order interactions and approximate the
fields uniformly in time and space by a finite number of modes. In a sense
we can think of the NLS equation as being the optical analog of the Euler
equations, the high-Reynolds-number, inviscid limit of the Navier-Stokes
equations, with the one (two) dimensional NLS equation corresponding to the
two (three) dimensional Euler equations. Much more information is known
about the NLS equation in both cases. Of course, when light intensities are
s0 high they raise the temperature of matter to a point whére it behaves like
a plasma, then the weak coupling theory is no longer valid. Up to that point,
however, there remains much to be explored and discovered in contexts where
the weak coupling approximation is applicable.

For systems like lasers, which are confined by finite geometries, the spec-
trum is discrete, spatial shapes are determined, and the spatial gradient terms
disappear. Again, however, because of the constraints of resonances, the
dynamics is described by a relatively low-order set of ordinary differential
equations of dissipative type for the oscillator amplitudes. The dissipation
arises from two sources. The electric field loses energy mainly because of
imperfect mirrors. Matter loses energy because of collisions and the slow irre-
versible decay of the number of excited atoms to levels that are not included
in the approximation. These effects, called homogeneous broadening, are
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modeled by the inclusion of linear damping terms. As we have mentioned,
the behavior of the solutions of these coupled sets of ordinary differential
equations can be very complicated. While there is no general theory for
determining the nature of the asymptotic states (whether fixed points, limit
-cycles, or strange attractors) for such sets of equations, there has nevertheless
been built up much qualitative experience about their behavior. This has
been greatly facilitated by the new generation of computer workstations with
their high performance processing and graphical capabilities, which provide
a very powerful analytical research tool. In Chapter 6, we describe some of
the sophisticated software available on most modern computer workstations.
In addition to the standard commercial scientific subroutine packages such as
IMSL or NAG, and symbolic programming languages like MACSYMA or REDUCE
for algebraic manipulation of complex expressions, one can gain access to
bifurcation packages (AUTO, PITCON, etc.) and a host of very powerful UNIX-
based public domain software. The student can, with little computational
effort, realize the marvelous and deep mathematical insights of Poincaré re-
garding the geometry of phase space in real time on a high-resolution graphics
screen. For example, numerical integrators for the systems of ordinary dif-
ferential equations (0.d.e.’s) modeling standard laser systems can be found in
the standard IMSL or NAG packages available on most workstations.

We begin in the next section by briefly describing behavior unique to non-
linear systems. We then discuss dielectrics and emphasize that the principal
medium variable, the susceptibility or refractive index, which tells us how the -
polarization field depends on the applied electric field, is almost impossible
to calculate in general. In a very real sense, therefore, we start from a con-
stitutive relation that is at best an approximation. Consequently, it is clear
that a top priority of the field is to develop a better understanding of how to
calculate the susceptibility and how to design materials with susceptibilities
having advantageous properties. We then briefly discuss two areas of great
importance that are not treated in this edition, namely mode locking and pulse
compression and the interaction of light with semiconductors, each of which .
has enormous practical potential and intellectual challenges. We felt that to
omit any mention of them would signal that they were not important. To
disabuse the reader of that conclusion, we decided to mention them up front.

The ‘Nature of Nonlinearity

We look at the question of defining a nonlinear system two ways, first by
the mathematical character of the laws (equations) that describe its bcha_vior ‘



