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INTRODUCTION

These notes are centred on one question : given a real algebraic

surface X determine the topology of the real part X(R) .

Of course, since, to quote Hartshorne, the guiding problem in
algebraic geometry is the classification problem (and this goes for
real algebraic geometry also), the 1latter is very present in these
notes. In fact it is present to the point, that we have only obtained
a precise answer to our original question when we have obtained a pre-
cise answer to the classification problem. In this sense one could say
that the underlying theme (and even, the main theme) of these notes is

the classification problem of real algebraic surfaces.

This second preoccupation has dictated the plan of these notes
and to some extent the methods used. We explain this. If two algebraic
varieties are real isomorphic, then they certainly are complex isomor-
phic. Hence, our starting point, the well known Enriques-Kodaira clas-

sification of complex algebraic surfaces, and the plan.

To be able to make the most of the knowledge accumulated on com-
plex algebraic surfaces we have used an alternative definition for
real algebraic varieties, explicitly, we define them as complex alge-
braic varieties with an antiholomorphic involution. Otherwise said, we
consider real algebraic varieties as complex algebraic varieties with
an action of the Galois group Gal(CIR) (in the projective case, our
only preoccupation, the two definitions are equivalent - see I.§1).

This is the foundation of all the methods used in these notes.

From this point of view real algebraic surfaces fall into two
classes, those for which the Galois action on H*(X(C),Z) determines
H*(X(R),Z/Z) and those for which the Galois action only gives bounds
on the dimensions of H*(X(R),Z/2). We call the first Galois-Maximal or
GM-surfaces, they include rational surfaces, abelian surfaces, K3 sur-

faces and surfaces in P3. In the second class lie ruled surfaces and
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in general, surfaces fibred on a curve (elliptic surfaces... etc...).

We have been able to solve the classification problem completely

for rational surfaces (chap. III and VI), abelian surfaces (chap. IV)

and K3 surfaces (chap. VIII). These are all GM-surfaces.

For non-GM-surfaces we have concentrated on ruled and elliptic
surfaces. The basic method used in both cases has been to study the

Galois action on the fibration. We have obtained in this way complete

results for ruled surfaces (chap. V) and complete local results for
elliptic surfaces (chap. VII). We have also applied these methods to

r»ational ruled surfaces (chap. VI).

The ideas, behind these methods are not new. The idea to consi-
der a real algebraic variety as a complex variety with an antiholomor-
phic involution goes back at least to F. Klein and the idea to consi-
der Galois action on cohomology is implicitly in Comessatti (although,
of course, in different terms). The deep relations, of which we
have made an essential use, between the cup-product form on H2(X(C),Z)
and H*(X(R),Z/Z) are originally due to Arnold, Rokhlin, Gudkov,
Kraknov and Kharlamov (see chap. II). To these authors is also due the
use in real algebraic geometry of the Smith sequence. Finally, in this

direction, the concept of GM-variety is due to Krasnov.

The idea to study Galois action on fibrations, goes back to
Comessatti who studied the Galois action on pencils of curves, but the
methods we have used are far closer to the methods developed by Manin

and Iskovskih, the results of whom we have made an essential use.

We have tried to include 1in these notes most of the results on

surfaces of the above mentioned authors.

Because of its importance it may be useful here, to say a few
words on our treatment of the classification problem. As is usual in

algebraic geometry such a problem divides into a discrete part (fin-



ding the right invariants) and a continuous part (the moduli problem).

For the discrete part, the first idea one can have, to consider
complex invariants plus topological invariants of the real part, does
not give a complete set of invariants. This is already true, and well
known, in the case of curves. For GM-surfaces the correct set of inva-
riants turns out to be the invariants for the action of the anti-
holomorphic involution on H*(X(C),Z) taken with the cup-product from
and the Hodge decomposition (this includes all of the classical com-
plex invariants). Note that for curves and abelian varieties, which

are GM-varieties, this also gives the correct invariants.

We have taken these as our basic invariants even in the case of
non-Galois-Maximal surfaces, in which case of course, they do not form

a complete set of invariants.

For the continuous part, we have tried to build a Moduli space
which classifies real algebraic surfaces with given invariants, up to
real isomorphisms. This is somewhat different from considering the
real part of the complex moduli space when it is known (for a discus-
sion see chap. IV, §4). Even when a fine Moduli space does exist (for
K3 surfaces for example) our method seems to give a more direct

answer.

Among the results included in these notes, which are not specifi-
cally linked with the classification problem we should mention the re-

sults of chapter II giving bounds for the number of connected compo-

nents and for the hl(X(R),Z/Z) of a real algebraic surface and the
results of chapter III on the subgroup of Hl(X(R),Z/Z) generated by

algebraic cycles.

Among the subjects not treated in these notes the most important
omission concerns surfaces of general type (they are only considered
in a couple of examples). The main reason for this absence is that the
study of complex surfaces of general type is still a field of active

research and not all the questions we need an answer to (to apply our
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methods) have been solved. For specific families of surfaces of gene-
ral type, for example double covers of rational surfaces, or surfaces
fibred in curves of genus 2 (where we could have applied methods simi-
lar to those of chap. VII) the absence is essentially due to lack of

time.

Another subject absent from these notes, is singular surfaces. The
reasons for this omissions are more or less the same as the ones given

for surfaces of general type.

A 1last subject omitted although originally planed to be included
in these notes is the study of real automorphisms of surfaces and the
parent problem of determining the number of distinct real structures

on a complex surface.

Finally to end this introduction we would like to note that spe-
cial attention has been given, throughout these notes, to examples.
Indeed, we have tried to illustrate all of the important notions

introduced in the text by adequate examples.



Prerequisites and notations

The general prerequisite for reading these notes, is a basic know-
ledge of algebraic geometry as exposed for example in Griffiths and

Harris, Principles of Algebraic Geometry ([Gr & Ha]) chapters 0 and 1

or Hartshorne, Algebraic Geometry ([Ha]) chapters I and II, plus some

knowledge on complex algebraic surfaces as exposed in [Gr & Ha] chap-
ter 4 or [Ha] chapter V, or for more specific and precise results (but
in this case we have tried to give complete references) Barth, Peters
and Van de Ven [B & P & V], Beauville [Be], Shafarevich [Sha] or for

K3-surfaces the Palaiseau Seminar [X].

Oon the other hand no knowledge of Real Algebraic Geometry is assu-
med. We expose the basic results needed 1in chapters I and II, and
these notes can serve as an introduction to real algebraic geometry

for non-specialists and graduate students in algebraic geometry.

The notations are the standard notations of algebraic geometry,
for the less well known of these we have tried to give either defini-
tions or precise references. There are some differences with the nota-
tions used by other authors. The most important are that, for reasons
which will become clear in chapters I and II, we have used the Hodge
numbers h®/2 and h0/1 in place of the geometric genus Py and the irre-
gularity g, x(X(C)), topological Euler characteristic in place of
C5(X) and x(0Ox) for the Euler characteristic of the structure sheaf Oy

(in place of x(X) as used by some authors).

For notations concerning real algebraic geometry, we have system-
atically denoted G the Galois group Gal(C|{R) and S the generator of
this group. This 1is why, although we consider in most cases S as an
antiholomorphic involution on X(C), we speak of the action of S on the
groups Hi(X(C),Z), Hi(X(C),Q) ;... etc... (in place of S*). For other

important remarks on notations see I.(1.15).
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I. PRELIMINARIES ON REAL ALGEBRAIC VARIETIES.

1. Real structure on a complex algebraic variety.

We start by introducing the basic concepts we will be needing
throughout these notes. We will introduce them in two different set-
tings, complex analytic varieties on the one hand, schemes over C on
the other. Of course we will not be using the full power of either of
these theories but they provide a convenient frame for formulating
some general definitions. The different definitions turn out to be
equivalent when they concern the same objects, namely projective or
quasi-projective algebraic varieties. We will take advantage of this
and make constant use of the interplay between these two points of

view.

Let f be a holomorphic function defined in a neighborhood of
zg € cM. Let Jp @ ¢ —— ¢™ and j : ¢ —— C denote complex conju-

gation. We defined fY, the conjugate of f, to be the holomorphic func-

tion jofoj, defined in a neighbourhood of zgy = jp(zq)-

In other words, if zy = (29,1/---120,n) and if f is defined by :

> ak(zl‘zo,l)kl---(zn‘ zo,n)kn
k € zZ1

in a neighbourhood of zg, then f? if defined by :

£9(2) = 3 ag(z1-z¢,1)K1...(2n-2¢, n)¥n
k € z1

(where we have wused ‘s to denote complexe conjugates) in a neighbou-

rhood of zg.

Let X(C) be a complex analytic variety in C". We define the com-



plex conjugate variety X?(C) to be X?(C) = (2 / jp(z) = z € X(C))}. If U

is an open set in CT such that X(C) N U is the common zero locus of
holomorphic functions fy,...,f, then X9(C) N U (where U = (z / z € U}
is the common =zero locus of ff,...,fJ. We note that if the f;s are

polynomials then obviously the f{’s are also polynomials.

In a more general way we can define this notion of conjugate va-
riety globally for analytic varieties. Let (X(C) ,0x (c)) (9% (C) the
sheaf of holomorphic functions) be a complexe analytic variety. We de-

fine the complexe conjugate variety to be (X(C),@X(C)), where 6X(C) is

the sheaf of antiholomorphic functions on X(C).

To see that these two definitions are compatible assume X(C) < CP.
Then via j,, we can identify, as point sets, X(C) and X?(C). This iden-
tification identifies Oxo(c) with OX(C)' The equivalence of the two
definitions follows from this .

If X(C) is a complex manifold we can reformulate the second defi-
nition in the following way : let (Uj,¢j) be an atlas defining the

complex structure on X(C). We define X9(C), the complex conjugate

manifold of X(C), to be defined by the atlas (Uj,Jjp°¢i) where again

jp ¢ €M — €M is complex conjugation.

Of these three definitions the most useful, which we write sepa-

rately, will be :

(1.1) Définition : Let (X(C) ,Ox(g)) be a complex analytic variety. We

will call (X(C),GX(C)), where C_JX(lD) is the sheaf of anti-holomorphic

function on X(C), ¢the complex conjugate variety of X(C). When the

sheaf OX(C) is understood we will write simply X(C) for the original

complex analytic variety and X9 (C) for the complex conjugate variety.

Our second point of view is the following : let X be a scheme
over € and 1let j : C — € be again complex conjugation. To X we can
associate its complex conjugate scheme X7 defined by composing the
structural morphism X —— Spec(C) with j* : Spec(C) —— Spec(C).



We note that if Oy (resp. OXU) is the sheaf of regular functions
on X (resp. X% ) then 0o = Ox where Oyx(U) = {jof / £ € Ox(U)}. This

shows that this last definition is compatible with definition (1.1) .

In particular if X is projective (or quasi-projective) defined in

some P™(C) by polynomial equations pi(z) = ... = pp(z) = 0 then X9 is
defined by p{(z) = ...= pJ(z) = 0 where p{ is the conjugate polynomial
of pj.

If X is of finite type over €, X(C), its set of complex valued
points, has a natural analytic structure. If X?(C) is the set of com-
plex points of X9, then, by the above, X?(C) is the conjugate variety

of X(C) in the sense of definition (1.1).

(1.2) Definition and Proposition : Let X be a scheme over C. We will

say that (X,S) or simply S is a real structure on X, if S is an invo-

lution on X such that the diagram

X — X

l l

g%
Spec(C) —— Spec(C)

(where j : C — C is complex conjugation) commutes.

If (X,S) is a real structure on X and Oy is the structure sheaf then

for any open set U of X the morphism :

'(U,0x) — T'(S5(U),0x)
£S

f — jofos =

is an isomorphism of rings.

Proof : By the definition, a real structure on X 1is a descent datum
relative to the inclusion R&~—- € , in the sense of Grothendieck

[Gr,]. With this it is easy to check that, if S 1is a real structure,



then f —— foS induces, for every open set U, an isomorphism

Oy (U) — Oxa(S(U)), hence the last assertion of (1.2).

Let X be of finite type over € and consider X(C), the set of com-
plex points with its natural complex analytic structure. If (X,S) is a

real structure, then S restricted to X(C) is just an anti-holomorphic

involution on X(C). We have a partial converse to this :

(1.3) Proposition : If X is a projective variety over C then X has a

real structure if and only if there exists an anti-holomorphic involu-

tion on X(C), the set of complex points of X.

Proof : We only need to prove the "if" part. If X is projective then
clearly the conjugate variety is also projective. Let S be an anti-
holomorphic involution on X(C) and o : X(C) —— X9 (C) the canonical
map induced by the identity on the point sets. The map Sco is
holomorphic, hence, since X is projective, algebraic by GAGA [Seq]. In
other words, S induces a continuous involution on X. Identifying X and

X9, as point sets we can write that S induces, for all open sets U of

X, an isomorphism Oy (U) Oxa(S(U)). Since by definition the map
f » jof identifies OXU(S(U)) and Ox(S(U)), we see that S satisfies the

conditions of (1.2).

Let X be a scheme over C. We will say that X has a real model if
there exists a scheme Xo over R such that X = X5 xRrC. We will say, in

such a case, that Xg is a real model of X.
If a scheme over C has a real model then the action of the Galois
group Gal(CIR) on X, defines in a natural way a real structure on X. We

have a converse to this :

(1.4) Proposition : Let X be a projective or quasi-projective scheme

over C. X has a real model if and only if X admits a real structure

(X,8). More precisely there exists a real structure (X,S) on X if and

only if there exists a real model X, for X and an isomorphism




¢ : X —— Xoxg € such that S = o'looow, where o is induced by com-

plex conjugation in XoxgrC. For a fixed (X,S), ¢ and X, are unigue up

to real isomorphism.

Proof : This is nothing but a reformulation, in our special case, of a

well known theorem of Weil (see [We;] or [Gr,] Exp. 190 Théoréme 3).

The trivial example given by P& and the curve defined in P2 by

x2+y2+z2 = 0 shows that complex varieties can have different non real-
isomorphic real models. (1.4) implies 1in such a case that they have
different real structures. If we have two real structures (X,S) and

(X,8"), (1.4) implies that they correspond to a same real model X, if

and only if there exists a complex automorphism ¢ of X such that :

(1.5) s =¢ Lo 57 0 .

As a consequence, we will say that two real structures (X,S) and

(X’,8’) are isomorphic or real equivalent if there exists an isomor-

phism ¢ : X —— X’ such that S, S’ and ¢ verify (1.5).

Let A be a set and G a group operating on A. We will denote aG
the set of fixed points of A under the action of G. Let X, be a real
algebraic variety (or more generally a scheme over R). Let G = Gal(CIR).

We have :
(1.6) Xo(R) = Xo(C)¢ .

Let (X,S) be a real structure on a complex algebraic variety. We
will call X(C)G (where, as always, G = Gal(CIR) acts on X(C) through S)
the real part of X. We will write X(R) or (X,S)(R), if the emphasis is

on S, for this real part.

We will assume until the end of this § that X is a complex alge-

braic variety and that X has a real structure (X,S).



