ADA |

Proc: -1 e
. Language

- |.C.Pyle

'T’P3'“ 8360103

The

Programming
Langudage

A GUIDE FOR PROGRAMMERS

1.C. PYLE

Department of Computer Science
Umversnty of York, England

E8360103

Prentice Hall ~‘~ ? International

ENGLEWOOD CLIFFS, NEW JERSEY ~ LONDON NEW DELHI
SINGAPORE ~ SIDNEY TOKYO TORONTO ~ WELLINGTON

British Library Cataloguing in Publication Data

Pyle, lan C
The Ada programming language.
1. Ada (Computer program language).
I. Title
001.6’42 QA76.73.A35
ISBN 0-13-003921-7

Library of Congress Cataloguing in Publication Data

Pyle, lan C 1934-
The Ada Programming Language
1. Ada (Computer program language)
I. Title.
QA76.73.A35P94 001.64'24 80-25034
ISBN 0-13-003921-7 (pbk)

© 1981 by PRENTICE-HALL INTERNATIONAL INC.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of Prentice-Hall International Inc.
London.

ISBN 0-13-003921-7

PRENTICE-HALL INTERNATIONAL, INC. London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE., LTD. Singapore
PRENTICE-HALL INC., Englewood Cliffs, New Jersey
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

10987654321

Printed in the United States of America

To Margaret

Preface

Ada is a new programming language, sponsored by the United States
Department of Defense, designed under the leadership of Jean D. Ichbiah. The language
is a major advance in programming technology, bringing together the best ideas on the
subjectin acoherent way designed to meet the real needs of practical programmers. It is
the first result of a substantial effort to identify the requirements for programming and
satisfy them effectively.

This book is written primarily for practicing programmers of embedded
computer systems, giving a full presentation of the power of Ada to those whose working
environment will be greatly changed by it during the next few years. Other readers will
include programmers of non-embedded systems, for whom most of the facilities will be
relevant, and teachers of programming who will benefit from the breadth and coherence
of Ada’s facilities.In addition, the book should be of value to managers of programming
projects, since Ada strongly assists the development of large programs.

In keeping with the primary aim of the book, the style of presentation presumes a
knowledge of programming. Topics are introduced in the context of embedded computer
systems, in an order which reflects the normal pattern used in programming. This is not
necessarily the best order for introductory teaching of the skill of programming itself.

Chapters 1to 5 coverthe basic features of Ada, which any programmer needs to
know. The subsequent chapters deal with more advanced features, which should only be
studied after the basic features are thoroughly understood. Chapters 6 to 8 deal with
particular programming concepts in Ada which will probably be new to most
programmers. Chapters 9 and 10 cover the issues of program structure, which take
traditional ideas as the start, but make significant extensions. Chapter 11 deals with
machine specific issues, and shows how they can be expressed in a machine
independent language. Chapters 12and 13 give an advanced treatment and more details
ontopicsintroduced previously. The appendices contain certain notes and definitions of
various particular items in Ada.

The official definition of Ada is the Language Reference Manual and Formal
Definition, not this book. It is possible that the language may be changed in the light of
experience and discovered problems; also, it is to be submitted for formal
standardization, and this may require changes at some time in the future. This book
differs from an official definition in that the official definition of a language must satisfy
both programmers and compiler-writers, two very different kinds of reader.
Unfortunately, this usually meansthat the definition goes barely farenough to satisfy the

X PREFACE

compiler-writers, and tends to have complications of notation and formality which make
it unsatisfactory for programmers. This book is intended to explain the language to
programmers who wish to learn Ada without having to become compiler specialists.

Most of the chapters finish with some programming exercises, which readers
may use to test their understanding of the ideas presented. The solutions to these
exercises are given elsewhere in the book, as examples of other aspects of Ada
programs.

As most readers will know, the language is named after a real person, Augusta
Ada, Countess of Lovelace, who first programmed a computer, before either computers
or programming had been recognized as such.

| wish to thank the many people who have helped me during the course of
preparing this book, particularly lan Wand and Brian Wichmann. The syntax diagrams
were produced by a program written by Colin Runciman and David Keeffe. Most of the
typing was done by Val Fry.

Most of all, Ithank my family for their encouragement and support while Ada has
been living with us.

March 1981 I.C.P.

Contents

PREFACE ix

Chapter 1 INTRODUCTION 1

1.1
1.2
13
1.4
1.5
1.6

An Ada Program 2

Another Program 3

A Real Program 3

Form of an Ada Program 5

Identifiers and Naming 5

The Environment of Ada Programs 6

1.6.1 Ada Programming Support Environment
1.6.2 AdaRun-time Environment 7

Exercises 7

Chapter 2 TYPES AND VALUES 9

21
22
2.3
24
25
2.6
27
28

Scalar Types 9
Subtypes 11
Records 12

Arrays 15

Strings 19

Data ltems 20
Strong Typing 21
Names and Objects 22

Exercises 24

Chapter 3 EXPRESSIONS 26

3.1

3.2

3.3

3.4
35
3.6
3.7

Numeric Expressions 26

3.1.1 Integer Expressions 27

3.1.2 Floating Point Expressions 27
3.1.3 Fixed Point Expressions 28
Logical Expressions 29

3.2.1 Relations 29

3.22 Conformance 30

3.2.3 Boolean Expressions 30
Other Kinds of Expression 31

3.3.1 Enumeration Expressions 31
3.3.2 Array Expressions 31

3.3.3 Expressions of Programmer-defined Types
Expressions in General 32

Operands 32

Operators 35

Evaluating Expressions 36

Exercises 37

iii

31

Y

Chapter4 STATEMENTS 38

4.1 Sequences of Statements 38
42 Assignment 40
4.3 Alternatives 40
4.3.1 Selection by Condition 40
4.3.2 Selection by Discriminant Value 41
4.4 Repetition 42
4.5 Call Statement 44
4.6 Declare Statement 45
4.7 Branching Statements 46
4.7.1 Exit Statement 46
4.7.2 Return Statement 47
4.7.3 Raise Statement 47
4.7.4 Goto Statement 48
4.8 Other Normal Statements 49
4.8.1 Delay Statement 49
4.8.2 Null Statement 50
Exercises 50

Chapter 5 SUBPROGRAMS 51

5.1 Subprogram Specification 52
Nature of subprogram 53
Name of subprogram 54
Parameters 54
Mode 54
Parameter association 55
Default parameters 55
Result 56

h. Overloading 56
5.2 Subprogram Bodies 58
5.3 Subprogram Calls 60
Exercises 62

Chapter 6 EXCEPTIONS 64

6.1 Declaring Exceptions 65
6.2 Raising Exceptions 66

6.3 Handling Exceptions 67
6.4 Propagating Exceptions 69
6.5 How to Use Exceptions 71
6.6 Predefined Exceptions 72
Exercises 74

Chapter 7 PACKAGES 75

7.1 Packages of Data 75

7.2 Reference to Packaged Entities 78
7.3 Packages with Defined Types 79

7.4 Packages with Subprograms 80

7.5 Packages with Private Types 81

7.6 Package Specification in General 82
7.7 Package Bodies 83

Exercises 85

@~oooope

CONTENTS

CONTENTS

Chapter 8 PARALLEL PROGRAMMING 86

8.1 Tasks and their Relationships 87
8.1.1 DeclaringaTask 88
8.1.2 Interaction between Tasks 89
8.1.3 ControllingaTask 91
8.2 Communication between Tasks 92
8.3 Asymmetry of Rendezvous 94
8.4 Active Tasks 95
8.4.1 Entry Time-out 95
8.4.2 Conditional Entry Call 96
8.5 Input/Output Tasks 96
8.5.1 Interrupt Handling 97
8.5.2 Input/Output Control 98
Exercises 100

Chapter 9 PROGRAM STRUCTURE 101

9.1 Visibility of Declarations 102
9.1.1 Statement Labels 102
9.1.2 Block and Loop Identifiers 103
9.1.3 Loop Parameters 103
9.2 Declared Identifiers 104
9.3 Block Structure 105
9.3.1 Block Structure with Declare Statements 105
9.3.2 Block Structure with Subprograms 107
9.4 Module Structure 108
9.5 Uniqueness of Identifiers 110
9.6 Local Contexts 111
9.6.1 Values of Enumeration Types 111
9.6.2 Record Component Identifiers 112
9.6.3 Formal Parameters of Subprograms 114
9.7 Signature of Subprograms 115
Exercises 116

Chapter 10 SEPARATE COMPILATION AND GENERICS

10.1 Compilation Units 119
10.2 Effective Context of a Compilation Unit 120
10.3 Contexts Accessible to a Compilation Unit 122
10.4 Separate Subunits 123
10.5 Order of Compilation 124
10.6 Order of Recompilation 125
10.7 Generic Program Units 127
10.7.1 Comparison of Direct, Separate and Generic Styles 128
10.8 Generic Parameters 129
10.9 How to Use Generics 130
10.9.1 Queue Handling 131
10.9.2 Table with Keys 134
Exercises 137

118

EGRoary

vi

Chapter 11 INPUT/OUTPUT AND REPRESENTATIONS

11.1 Files 139

11.2 Preparing to Use a File 142

11.3 DataTransfers 143

11.4 File Positioning 145

11.5 Text Input/Output 146
11.5.1 Simple Text Output 147
11.56.2 Simple Text Input 148
11.56.3 Fixed Format Input 150
11.5.4 Layout Control 150
1155 Implied Streams 151

11.6 Representation Specifications 152
11.6.1 Record Layout 153
11.6.2 Address Specification 154
11.6.3 Enumeration Representations 155
11.6.4 Representations Affecting Storage Allocation 156
11.6.5 Manipulating Representations 156
11.6.6 Packaged Input/Output 157
11.6.7 Code Statement - Executable Machine Code 159
11.6.8 Low-level Input/Output 160

11.7 Interrupts 160

Exercises 162

Chapter 12 MOREONTYPES 163

12.1 Derived Types 164
12.2 Abstract Data Types 165
12.3 Records with Variants 167
12.4 Constraints and Subtypes 171
12.4.1 Range Constraints 172
12.4.2 Accuracy Constraints 173
a. Relative precision: floating point 173
b. Absolute precision: fixed point 174
12.4.3 Discriminant Constraints 174
12.4.4 Index Constraints 176
12.4.5 Constraints and Derived Types 177
125 Access Types 179
12.5.1 Access Objects 182
12.5.2 Constructing New Objects 183
12.5.3 Access Values as Record Components 184
12.5.4 Relations between Access Objects 186
12,55 List Processing 189
12.5.6 Limited Number of Objects 192
12.5.7 Storage Control with Access Types 193
126 Use of Types in Program Design 195
Exercises 198

CONTENTS

138

8360103

CONTENTS vii

Chapter 13 MORE ON TASKING 200

13.1 Task Types 200
13.2 Families of Entries 201
13.3 Non-determinism 203
13.3.1 Selective Rendezvous 203
13.3.2 Watchdog Timer 204
13.3.3 Conditional Task Termination 205
13.3.4 Inhibition 205
13.3.5 Conditional Rendezvous 207
13.4 Task and Rendezvous Failures 208
13.4.1 Exception Propagation out of an Accept Statement 209
13.4.2 Exceptions at the Outermost Level of a Task 209
13.4.3 Stopping a Faulty Task 210
13.4.4 Abnormal Termination of a Faulty Task 210
13.45 Faulty Rendezvous 211
13.5 Intertask Communication in Mascot 211
13.5.1 Implementation of Mascot Channels 212
13.5.2 Implementation of Mascot Pools 213
13.6 Conclusion 216

APPENDICES

APPENDIX A Predefined Specifications 217
APPENDIXB Notes for Fortran Programmers 229
APPENDIXC Notes for Pascal Programmers 232
APPENDIXD Pragmas 235

APPENDIXE Attributes 237

APPENDIXF Glossary 245

APPENDIXG AdaSyntax 253

CHAPTER 1

Introduction

Ada is for programming embedded computer systems - that is, systems in
which a computer is directly connected to some apparatus or plant which
it monitors and/or controls. This means that Ada can be used for
conventional programming (which actually accounts for the majority of
embedded computer system programming) and ‘lso for the special technical
requirements concerning input/output, timing relationships, contingency
programming to cope with errors, and long-term maintenance.

Embedded computer systems range from intelligent terminals and smart
instrumentation to air traffic control or factory automation, via
laboratory data monitoring, numerically controlled machine tools,
navigation and guidance systems, stored program controlled telephone
exchanges, batch and continuous production control, environmental
monitoring, and future domestic products containing microcomputers. The
computer involved may be large or small, single or a collection of many
processors, or part of a computer network.

It is expected, however, that the program concerned in each system
would have a 1lifetime of several years, and consequently that people
other than the original programmers would be involved in maintaining it.
This concern for maintenance underlies much of the style of Ada.

Ada gives special attention to the ease of reading and wunderstanding
programs - it is based on the realisation that it is more important to
be able to read a program and understand it clearly than to be able to
write it quickly or briefly. We therefore tend to use fairly long names
and identifiers in an Ada program, and state the assumptions which the
design of the program implies. The reason for this is that the writer
of the program does his job once, but maintainers of the program may
have to read the program many times throughout its life.

2 Introduction

l.1 An Ada program

Programs in Ada specify not only the actions inside computers, but also
the interactions between the computers and the environment in which they
are embedded. Since the interactions with the environment can be quite
tricky to program, it is usual to design separate pieces of program to
deal with the various kinds of input/output devices, and the resulting
pieces of program are kept in libraries. For a simple Ada program, we
use an existing library package to handle the input/output, and specify
the particular actions we want by calling on facilities made available
by the package.

In this first example we show a trivial program in Ada. The program
is written as a procedure, which specifies the actions to be carried
out. In an Ada development environment, many procedures will be held in
a library, where they are available for use in other programs. In
practice, all programs are likely to refer to the library for units
defining many commonly required actions such as input/output and
mathematical functions. A package called STANDARD is always available;
it 1is specified in Appendix A. For this example, we use a library
package called TEXT I0. (Its definition is also given in Appendix A.
It 1is significant that the package specification is itself written in
Ada.) A program must begin by listing the units it needs; these will be
extracted from the library by the translator.

with TEXT IO; use TEXT 10;
procedure EX 1 is -
pragma MAIN;
begin
NEW LINE;
PUT ("Hello");
end EX 1;

The program is written using special key-words such as with,
procedure, begin and end, together with other words such as TEXT 10,
PUT. The keywords are fixed for all Ada programs, and show the structure
of the program. The other words are called identifiers, and are invented
by the programmers to denote the particular entities concerned in the
program.

This program needs the unit TEXT I0 (and no other), which defines the
procedures NEW LINE and PUT (among others), and sets up input/output
files on suitable devices. The program prints the message

Hello

An Ada program

on a new line on the output device. Notice that the program has a name
EX 1 which is given at the beginning and end, so that the body of the
prggram is clearly delimited.

1.2 Another program

This is a slightly more complicated program, but still very trivial and
unrealistic. It adds together two simple integers.

with TEXT_;O; use TEXT_}O;
procedure EX 2 is

pragma MAIN;

A, B : INTEGER range 0 .. 999;
begin

GET (A); GET (B);

NEW LINE;

PUT ("The sum of");

PUT (A); PUT ("and"); PUT (B);

PUT ("is"); PUT (A + B);
end EX 2;

Notice that the names A and B are used to hold the values which are read
in by the procedure GET (also defined in TEXT I0). In order that the
program can know what to expect for the values before they are used, the
type and range for each must be declared at the head of the program.
The package STANDARD includes the definition of INTEGER and "+". This
package is automatically available for every program unit.

1.3 A real program

Any program for a genuine embedded computer system will be quite large,
and may be written as a collection of separate units in order that it
can be maintained effectively. Here is one unit of a program to control
a filtration plant (see figure la). River water is pumped through a
filter and clean water is delivered. After a time, the filter gets
clogged with debris and has to be cleaned by blowing air through and
draining out the sump; filtering can then resume. Occasionally a fault
in the valves may make it necessary to close down the whole plant.

with MAJOR PHASES; use MAJOR_?HASES;
procedure SINGLE FILTER is
begin

START UP;

4 Introduction

WATER VENT
= 4
V“” W%VT* i
:.'\ ’ ; ; ‘,@
S
5 =g A =
} CLEAN
PLMP ¥ WATER
® &
BLOWER ‘lb
AR — |
WASTE
WATER

Figure la: Filtration Unit

loop
DELIVER WATER;
CLEAN FILTER;
end loop;

exception
when others => —— FAULT or other trouble
CLOSE_DOWN;
end SINGLE FILTER;

Further details of the filtration unit are given in later examples.

Notice that this program unit shows how the action of SINGLE FILTER
is achieved in terms of application-specific procedures. These would be
expressed in a separate unit that contains the specifications of the
other procedures etc.:

package MAJOR PHASES is
procedure START UP;
procedure DELIVER WATER;
procedure CLEAN FILTER;
procedure CLOSE DOWN;
FAULT : exception;

end MAJOR PHASES;

A real program

The details (bodies) of the procedures such as START UP are written in a
corresponding package body.

1.4 Form of an Ada program

The text of the Ada program consists mainly of two kinds of words and
various punctuation marks. Words 1like procedure, 1is, separate, end
(conventionally written in small letters) are reserved for special wuses
in Ada, and determine the main structure of the program. These are known
as keywords. The other words, 1like SINGLE FILTER, START UP, FAULT,
CLOSE DOWN (conventially written in capital letters) are invented by the
programmer, to denote the various entities in the program; these words
are technically called identifiers. They must always be different from
the Ada keywords.

As well as the main text of the program, whose structure is
prescribed by the Ada 1language, there may be comments on any line,
introduced by a double hyphen. Comments may contain any characters
without restriction, for the rest of the line. They are used by the
programmer to give additional information to the reader of the program,
but this is not checked in any way by the compiler.

Another special comstruct in an Ada program is called a pragma: this
is a phrase used to give information to the compiler about translating
the program. A main program is written in Ada as a procedure, but
marked:

pragma MAIN;

Pragmas do not affect the meaning of a program, but may affect the
way it is implemented (e.g. choice of optimisation). The possible
pragmas in Ada are listed Appendix D.

15 Identifiers and naming

Identifiers are the fundamental creation of the programmer: they name
the entities which are needed for the particular program he is
designing. An identifier is made up using letters and digits (linked by
underline characters) - which must be different from the Ada key words,
disregarding the case of the letters. Identifiers may not contain
spaces, and may not spread over from one line to another.

6 Introduction

The words used to make an identifier should be carefully chosen to be
a suitable name for the entity concerned: for example a verb (or verb
clause) for a procedure (which denotes an action), and a noun (or a noun
clause) for a data object (variable or constant). A type may be named by
a suitable abstract noun. Choosing appropriate names is an important
aspect of programming. These suggestions are of course not enforced by
Ada, and do not constrain the creativity of the programmer. Examples of
names are given throughout the book, as we introduce the various kinds
of entity that can occur in an Ada program.

1.6 » The enviroument of Ada programs

Ada programs are intended for execution in embedded computer systems -
implying significant differences from the wusage of conventional
programming languages. The differences concern the way Ada programs are
developed, and their operational environment. The main consequence 1is
that Ada programs are wusually cross—compiled on a host computer,
distinct from the target computer for operational use; another important
consequence is that an Ada program is likely to be the only program in a
computer, with complete responsibility for its activities, not sharing
facilities or implying an "operating system" of the conventional kind.
The Ada programmer may specify how the various parts of the program
interact with one another and with the equipment connected to it.

Some specific: differences between Ada and other programming languages
are noted in Appendices B (Fortran) and C (Pascal). The translation of
an Ada program into its executable form is more than traditional
compilation. It includes also the operations of linkage-editing and
library module incorporation (which are done separately with other
languages), and the provision of run—time facilities to implement the
various semantic features of the language such as inter-task
communication and dynamic storage allocation.

1.6.1 Ada Programming Support Environment

For the development of Ada programs, an Ada Programming Support
Environment is planned. At the time of writing (1980), the requirements
and main outline of this environment have been specified, but the actual
details have not yet been settled.

Translation of an Ada program involves compilation of the separate
units, with cross—checking of interfaces and provision of other required
units from a library. The environment includes all the necessary utility

