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Preface

The Lecture Notes collect seven mini-courses presented at the 5th
Prague Summer School on Mathematical Statistical Physics that took
place during two weeks of September 2006. As with preceding schools, it
was aimed at PhD students and young postdocs. The central theme of
the volume is what could be called “mathematics of phase transitions”
in diverse contexts. Even though all courses were meant to introduce
the reader to recent progress of a particular topic of modern statisti-
cal physics, attention has been paid to providing a solid grounding by
carefully developing various basic tools.

One of the techniques that led, more than two decades ago, to a
series of important outcomes in the theory of phase transitions of lattice
models was reflection positivity. Recently it resurfaced and was used
to obtain interesting new results in various settings. The lectures of
Marek Biskup include a thorough introduction to reflection positivity
as well as a review of its recent applications. In addition, it contains a
crash course on lattice spin models that is useful as a background for
other lectures of the collection.

Also the following two contributions concern equilibrium statistical
physics. The lectures of Dmitri loffe are devoted to a stochastic geomet-
ric reformulation of classical as well as quantum Ising models. A unified
approach to the Fortuin-Kasteleyn and random current representations
in terms of path integrals is presented.

Statistical mechanics of directed polymers interacting with one-
dimensional spatial effects is a topic with various applications in physics
and biophysics. The lectures of Fabio Toninelli are devoted to a thor-
ough discussion of the localization/delocalization transition in these
models.



VI Preface

Metastability is a topic that has attracted a lot of attention re-
cently. Here it is discussed in the notes of Anton Bovier and Frank den
Hollander. The emphasis of the course of Anton Bovier is on a gen-
eral rigorous framework. It explores how distinct time scales arise in
Markov processes and how the metastable exit times can be expressed
in terms of capacity, the crucial notion coming from potential theory.
The lectures by Frank den Hollander are then devoted to a nontrivial
application to metastability in the context of Glauber and Kawasaki
dynamics of lattice gases. The main step is the careful evaluation of
the relevant capacity in these particular cases.

Readers can have a glimpse of the prolifically developing nonequi-
librium realm in the remaining two contributions. The lectures that
were presented by Christian Maes and Karel Neto¢ny form a pedagog-
ical account of several recently discussed topics, with an emphasis on
general principles.

Facilitated spin models, also known as kinetically constrained spin
models, are reflecting important peculiar features of glassy dynamics.
The lectures of Fabio Martinelli, submitted here with his coauthors, re-
view mathematical results that contributed to a settlement of questions
arising from numerical simulations.

Only one mini-course presented in Prague was not included into the
present volume. These are the lectures about computational complexity
and phase transitions in combinatorial optimisation presented by Stefan
Mertens. The main reason for this ommision is that his presentation
was based on the recent monograph written by him and Cris Moore
that already covers very well this topic.

The School was organised by Center for Theoretical Study (through
the grant MSM 0021620845) with the Institute of Theoretical Com-
puter Science at Charles University providing their beautiful lecture
room in the historical centre. It could not have happened without the
support of the European Science Foundation under the auspices of the
programme Phase Transitions and Fluctuation Phenomena for Random
Dynamics in Spatially Extended Systems. But most of all, the success
of the School was determined by the lecturers as well as the students
who created a pleasant and stimulating atmosphere. We hope that this
spirit found its way into the written version of the lecture notes and
will be appreciated by the reader.

Prague Roman Kotecky
November, 2008
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1 Introduction

Phase transitions are one of the most fascinating, and also most
perplexing, phenomena in equilibrium statistical mechanics. On the
physics side, many approximate methods to explain or otherwise jus-
tify phase transitions are known but a complete mathematical under-
standing is available only in a handful of simplest of all cases. One
set of tractable systems consists of the so called lattice spin models.
Originally, these came to existence as simplified versions of (somewhat
more realistic) models of crystalline materials in solid state physics but
their versatile nature earned them a life of their own in many other
disciplines where complex systems are of interest.

The present set of notes describes one successful mathematical ap-
proach to phase transitions in lattice spin models which is based on
the technique of reflection positivity. This technique was developed in
the late 1970s in the groundbreaking works of F. Dyson, J. Frohlich,
R. Israel, E. Lieb, B. Simon and T. Spencer who used it to establish
phase transitions in a host of physically-interesting classical and quan-
tum lattice spin models; most notably, the classical Heisenberg ferro-
magnet and the quantum XY model and Heisenberg antiferromagnet.
Other powerful techniques — e.g., Pirogov-Sinai theory, lace expansion
or multiscale analysis in field theory — are available at present that
can serve a similar purpose in related contexts, but we will leave their
review to experts in those areas.

The most attractive feature of reflection positivity — especially,
compared to the alternative techniques — is the simplicity of the
resulting proofs. There are generally two types of arguments one can
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use: The first one is to derive the so called infrared bound, which states
in quantitative terms that the fluctuations of the spin variables are
dominated by those of a lattice Gaussian free field. In systems with an
internal symmetry, this yields a proof of a symmetry-breaking phase
transition by way of a spin-condensation argument. Another route goes
via the so called chessboard estimates, which allow one to implement
a Peierls-type argument regardless of whether the model exhibits an
internal symmetry or not.

Avid users of the alternative techniques are often quick to point
out that the simplicity of proofs has its price: As a rather restrictive
condition, reflection positivity applies only to a small (in a well defined
sense) class of systems. Fortunately for the technique and mathematical
physics in general, the models to which it does apply constitute a large
portion of what is interesting for physics, and to physicists. Thus, unless
one is exclusively after universal statements — i.e., those robust under
rather arbitrary perturbations the route via reflection positivity is
often fairly satisfactory.

The spectacular success of reflection positivity from the late 1970s
was followed by many interesting developments. For instance, in var-
ious joint collaborations, R. Dobrushin, R. Kotecky and S. Shlosman
showed how chessboard estimates can be used to prove a phase transi-
tion in a class of systems with naturally-defined ordered and disordered
components; most prominently, the g-state Potts model for ¢ > 1.
Another neat application came in the papers of M. Aizenman from
early 1980s in which he combined the infrared bound with his random-
current representation to conclude mean-field critical behavior in the
nearest-neighbor Ising ferromagnet above 4 dimensions. Yet another
example is the proof, by L. Chayes, R. Kotecky and S. Shlosman, that
the Fisher-renormalization scheme in annealed-diluted systems may be
substituted by the emergence of an intermediate phase.

These notes discuss also more recent results where their author had
a chance to contribute to the field. The common ground for some of
these is the use of reflection positivity to provide mathematical justifi-
cation of “well-known” conclusions from physics folklore. For instance,
in papers by N. Crawford, L. Chayes and the present author, the in-
frared bound was shown to imply that, once a model undergoes a field
or energy driven first-order transition in mean-field theory, a similar
transition will occur in the lattice model provided the spatial dimen-
sion is sufficiently high or the interaction is sufficiently spread-out (but
still reflection positive). Another result — due to L. Chayes, S. Starr
and the present author — asserts that if a reflection-positive quantum
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spin system undergoes a phase transition at intermediate temperatures
in its classical limit, a similar transition occurs in the quantum system
provided the magnitude of the quantum spin is sufficiently large.

There have also been recent cases where reflection positivity brought
a definite end to a controversy that physics arguments were not able to
resolve. One instance concerned certain non-linear vector and liquid-
crystal models; it was debated whether a transition can occur already
in 2 dimensions. This was settled in recent work of A. van Enter and
S. Shlosman. Another instance involved spin systems whose (infinite)
set of ground states had a much larger set of symmetries than the
Hamiltonian of the model; two competing physics reasonings argued
for, and against, the survival of these states at low temperatures. Here,
in papers of L. Chayes, S. Kivelson, Z. Nussinov and the present au-
thor, spin-wave free energy calculations were combined with chessboard
estimates to construct a rigorous proof of phase coexistence of only a
finite number of low-temperature states.

These recent activities show that the full potential of reflection posi-
tivity may not yet have been fully exhausted and that the technique will
continue to play an important role in mathematical statistical mechan-
ics. It is hoped that the present text will help newcomers to this field
learn the essentials of the subject before the need arises to plow through
the research papers where the original derivations first appeared.

Organization

This text began as class notes for nine hours of lectures on reflection
positivity at the 2006 Prague School and gradually grew into a survey
of (part of) this research area. The presentation opens with a review of
basic facts about lattice spin models and then proceeds to study two
applications of the infrared bound: a spin-condensation argument and a
link to mean-field theory. These are followed by the classical derivation
of the infrared bound from reflection positivity. The remainder of the
notes is spent on applications of a by-product of this derivation, the
chessboard estimate, to proofs of phase coexistence.

The emphasis of the notes is on a pedagogical introduction to re-
flection positivity; for this reason we often sacrifice on generality and
rather demonstrate the main ideas on the simplest case of interest. To
compensate for the inevitable loss of generality, each chapter is en-
dowed with a section “Literature remarks” where we attempt to list
the references deemed most relevant to the topic at hand. The notes
are closed with a short section on topics that are not covered as well
as some open problems that the author finds worthy of some thought.
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2 Lattice Spin Models: Crash Course

This section prepares the ground for the rest of the course by introduc-
ing the main concepts from the theory of Gibbs measures for lattice
spin models. The results introduced here are selected entirely for the
purpose of these notes; readers wishing a more comprehensive — and
in-depth — treatment should consult classic textbooks on the subject.

2.1 Basic Setup

Let us start discussing the setup of the models to which we will di-
rect our attention throughout this course. The basic ingredients are as
follows:

e Lattice: We will take the d-dimensional hypercubic lattice Z¢ as our
underlying graph. This is the graph with vertices at all points in R?
with integer coordinates and edges between any nearest neighbor
pair of vertices; i.e., those at Euclidean distance one. We will use
(z,y) to denote an (unordered) nearest-neighbor pair.
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e Spins: At each = € Z? we will consider a spin S,. by which we will
mean a random variable taking values in a closed subset {2 of R”,
for some v > 1. We will use S, - S, to denote a scalar product
between S, and S, (Euclidean or otherwise).

e Spin configurations: For A C Z%, we will refer to Sy := (S;)zen
as the spin configuration in A. We will be generically interested in
describing the statistical properties of such spin configurations with
respect to certain (canonical) measures.

e Boundary conditions: To describe the law of S,. we will not be
able to ignore that some spins are also outside A. We will refer
to the configuration S4c of these spins as the boundary condition.
The latter will usually be fixed and may often even be considered a
parameter of the game. When both Sy and Sjc are known, we will
write

S :=(54.5x¢) (2.1)
to denote their concatenation on all of Z<.

The above setting incorporates rather varied physical contexts. The
spins may be thought of as describing magnetic moments of atoms in a
crystal, displacement of atoms from their equilibrium positions or even
orientation of grains in nearly-crystalline granular materials.

To define the dynamics of spin systems, we will need to specify the
energetics. This is conveniently done by prescribing the Hamailtonian
which is a function on the spin-configuration space Q7 that tells us
how much energy each spin configuration has. Of course, to have all
quantities well defined we need to fix a finite volume A C Z% and
compute only the energy in A. The most general formula we will ever
need is

Hy(S):= > ®aS) (2.2)
ACZ? finite
ANA#£D
where @4 is a function that depends only on S4. To make everything
well defined. we require, e.g., that @4 is translation invariant and that
> 450 [Pall < oc. (The infinity norm may be replaced by some other
norm; in particular, should the need arise to talk about unbounded
spins.) It is often more convenient to write the above as a formal sum:

H(S) =Y ®a(S) (2.3)
A

with the above specific understanding whenever a precise definition is
desired.
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The energy is not sufficient on its own to define the statistical
mechanics of such spin systems; we also need to specify the a priori
measure on the spins. This will be achieved by prescribing a Borel mea-
sure f1o on §2 (which may or may not be finite). Before the interaction is
“switched on,” the spin configurations will be “distributed” according
to the product measure, i.e., the a priori law of S, is ®xeA po(dSz).
The full statistical-mechanical law is then given by a Gibbs measure
which (in finite volume) takes the general form e 7S ] 110(dS,); cf
Sect. 2.3 for more details.

2.2 Examples

Here are a few examples of spin systems:

(1) O(n)-model: Here 2 := S"~! = {z € R": |z] = 1} with po :=
surface measure on S”~!'. The Hamiltonian is

HS)=-J5 8,85, (2.4)
)

(zyy

where the dot denotes the usual (Euclidean) dot-product in R™ and
J > 0. (Note that this comes at no loss as the sign of .J can be changed
by reversing the spins on the odd sublattice of Z4.)

Note that if A € O(n) — i.e., A is an n-dimensional orthogonal
matrix — then

and so H(AS) = H(S). Since also pi9 o A™' = g, the model possesses
a global rotation invariance — with respect to a simultaneous rotation
of all spins. (For n = 1 this reduces to the invariance under the flip
+1 < —1.)

Two instances of this model are known by other names: n = 2 is the
rotor model while n = 3 is the (classical) Heisenberg ferromagnet.

(2) Ising model: Formally, this is the O(1)-model. Explicitly, the spin
variables o, take values in {2 := {—1.+1} with uniform a priori mea-
sure; the Hamiltonian is

H(o):=~J) 0.0, (2.6)
(z.y)

Note that the energy is smaller when the spins at nearest neighbors
align and higher when they antialign. (A similar statement holds, of
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course, for all O(n) models.) This is due to the choice of the sign .J > 0
which makes these models ferromagnets.

(3) Potts model: This is a generalization of the Ising model beyond two
spin states. Explicitly, we fix ¢ € N and let o, take values in {1,...,q}
(with a uniform a priori measure). The Hamiltonian is

H(o):=—J 05,0, (2.7)

(z,y)

so the energy is —J when o, and o, “align” and zero otherwise. The
q = 2 case is the Ising model and ¢ = 1 may be related to bond
percolation on Z? (via the so called Fortuin-Kasteleyn representation
leading to the so called random-cluster model).

It turns out that the Hamiltonian (2.7) can be brought to the form
(2.4). Indeed, let £2 denote the set of ¢ points uniformly spread on the
unit sphere in R97!; we may think of these as the vertices of a g-simplex
(or a regular g-hedron). The cases g = 2,3, 4 are depicted in this figure:

AN

More explicitly, the elements of (2 are vectors V4, @ = 1,...,q, such

that
1 if @ =4,
Vo Vg :{ ’ ta=p (2.8)

-y otherwise.
q—1

The existence of such vectors can be proved by induction on g. Clearly,
if S, corresponds to o, and S, to o,, then

q 1
Sy Sy=—"90,0, — —— 2.9
T Yy q_l Oy q_l ( )

and so the Potts Hamiltonian is to within an additive constant of

H(S):=-J)  8:-8, (2.10)
(;I‘._l/)
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with J :=J 9;—1. This form, sometimes referred to as tetrahedral repre-
sentation, will be far more useful for our purposes than (2.7).

(4) Liquid-crystal model: There are many models that describe certain
granular materials known to many of us from digital displays: liquid
crystals. A distinguished feature of such materials is the presence of
orientational long-range order where a majority of the grains align with
one another despite the fact that the system as a whole is rotationally
invariant. One of the simplest models capturing this phenomenon is as
follows: Consider spins S, € S"~! with a uniform a priori measure.
The Hamiltonian is

H(S):==J> (S:-5,)° (2.11)

(x.y)

The interaction features global rotation invariance and the square takes
care of the fact that reflection of any spin does not change the energy
(i.e., only the orientation rather than the direction of the spin matters).

As for the Potts model, the Hamiltonian can again be brought to
the form reminiscent of the O(n)-model. Indeed, given a spin S € S"!
with Cartesian components S, a =1...., n, define an n X n matrix

Q by
1.
Qap =SSP — 5.4 (2.12)
n

(The subtraction of the identity is rather arbitrary and more or less
unnecessary; its goal is to achieve zero trace and thus reduce the number
of independent variables characterizing ) to n—1; i.e., as many degrees
of freedom as S has.) As is easy to check, if Q — S and Q — S are
related via the above formula, then

N A ~ 1\ 2 1 ‘
TH(QQ) = (5 5)* — = (2.13)
Since @ is symmetric, the trace evaluates to
TI'(QQ) = Z Qud(?nd (2.14)
a3

which is the canonical scalar product on n xn matrices. In this language
the Hamiltonian takes again the form we saw in the O(n) model.



