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LIST OF COMMONLY USED NOTATIONS

(Note: The references for the undefined terms used below may be found in
the index.)

A*(X) Exterior algebra of smooth differential
forms on a manifold X

{z} Algebraic ideal in A*(X) generated by a
set . of forms on X

(1,w) Exterior differential system with indepen-
dence condition

vt ,w) Set of integral manifolds of (1,w)

TN(V(I,w)) Tangent space to V(l,w) at N

(1,w;9) Variational Problem (cf. Chapter I, Sec. a)

o:V(1,w) >R Functional on V(I,w)

6¢:TN(l,w)->R Differential of @&

v(l,w;[A,B])) Subset of V(1,0) given by endpoint
conditions

TN(V(I,w;[A,B])) Tangent space to V(I,w;[A,B])

= mod | Congruence modulo an ideal tcA™(X)

z Congruence modulo the image of | A1+ A%(X)
(cf. (11.b.b))

PE Projectivization of a vector space E

Oy Restriction of B8 €A*(X) to a submanifold
N X

dg = 0 Exterior derivative of a differential form;
little 8 is frequently denoted by capital O

F(-) Frame manifold

Ly Lie derivative of a form ¢ along a vector

“ field v

Y ) Momentum space associated to (1,w;0)

Q Reduced momentum space associated to

(1,w;0)
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INTRODUCTION .

This monograph is a revised and expanded version of lecture notes
from a class given at Harvard University, Nankai University, and the
Graduate School of the Academia Sinica during 'the academic year 1981 -82.
The ObJeCthe was to present the formallsm together with numerous
|Ilustrat|ve examples, of the calculus of variations for anctionals
whose domain of definition consnsts of integral manlfolds of an exterior
dlfferentlal system. Thls lncludes as a specnal case the Lagrange
problem of ana\y1|ng classucal functionals with arbitrary (i.e., non-
holonomic as well as holonomlc) constraints. A secondary obJect|v= was
to illustrate in practlce some aspects of the theory of exterior
differentlal systems In fact, even though the calculus of variations
is a venerable subject about which it is hard to say somethlng new,
we feel that ut|1|l|ng technlques from exter:or d|fferentlal systems
such as Cauchy characterlstncs, Lhe dellved flag, and prolongatlon allows
a systematic treatment of the §ubject in greater generality than

customary and sheds new light on even the classical Lagrange probiem.

As indicated by the ‘table of contents the text is divided iito
four chapters, with most of the general theory being presented in' tlie
first and ‘145t S 'We break ‘'somewhat Wwith currenttradition “in that an
unusually large -amount of $pace i's devoted to examples. = Perhaps even
more fof 'a bréak“(or Ts ®it a regréccion?) is'the special concern civen
'to the explizit 'integration of the Euler-Lagrange equations, Jaco!
equations, Haw i1 fon-Jacobi eqﬁatimns, etc. in these examples—in ' word
we want “to get out formilas. Much ‘of ‘the middle two chapters are
devoted to methods for “doing this; again the theory of ‘exterior
differential systems provides an effective computational toolm(z)

For reasons of -spacs, and even moreso because the several variable
theory is incomplete at several crucial points, the discussion .is re- .
stricted to the case of ane indepprdent variable; i.e., we consider

functionals defined on nntegral cwyves of an exterior differential

system.



We will now describe an example that may help motivate developing
the theory in such generality. Let YcﬂEn be a smooth curve given
parametrically by its position vector x(s)€E" viewed as a function
of arclength. It is well-known that in general Yy has curvatures
K](S),. .,Kn_'(s) that are Euclidean invariants and that uniquely deter-
mine Yy up to a rigid motion (when n= 3 these are the usual curvature

and torsion). We consider a functional

(v} = o Ly (e sk () ds 4
¥

and ask standard questions such as i) find the Euler-Lagrange equations and ex-
plicitly integrate them if possible; ii) find the Jacobi equations and in-
formation on conjugate points; and iii) if L= L(KI,..,Kr) depends only on
the first r curvatures and if the matrix “aZL/BKiaKj”|<i,j<r>o' then show
that a solution to the Euler-Lagrange equations having no conjugate points is a
local minimum for (1). It isclear that this probtemmay be set up in coordi-
nates as a classical higher order variational problem, and it is equally
clear that in this formulation the resulting computations will be quite
lengthy. Alternatively, we may consider the Frénet frame associated to

Y as a curve N in the group E(n) of Euclidean motions. Then N is
an integral manifold of a left invariant exterior differential system
(I,w) on E(n), and (1) may be viewed as an invariant functional defined
on any integral manifold of (I,w). Once the general formalism of the
calculus of variations is in place for functionals defined only on
integral manifolds of differential systems, we may hope that in examples
such as this the theory should provide an effective computational tool.
For instance, it is known that the classical theory o. rigid body motion
extends to Lagrangians defined by left-invariant metrics on any Lie group
(theory of Kirilov-Kostant-Souriau; cf. [50] and [61]1), and it is reasonable to
try to further extend this theory to invariant functionals defined only

(3)

apply the result to the study of (1). This will be done in Chapter I11.

on integral manifolds of invariant exterior differential systems and

We shall now describe in more detail some of the contents of this
monograph, where we refer to the text for explanation of notations and

undefined terms (there is an index at the end).

Chapter 0 is preliminary and is intended only for reference. (It is

suggested that the reader begin with Chapter |.) In it are first
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collected some terminology and notations from standard manifold theory.
Next there is a very brief description of the language of jet manifolds
and of moving frames. The former provides a useful formalism for intro-
ducing derivatives as new variables (cf. [31], [38], [43], and

[62]). The latter is especially relevant due to the fact that a
general curve in many homogeneous spaces G/H have a 'Frénet frame';
i.e., a canonical 1ifting to G (cf. [34], [44]), and consequently the
aforementioned analysis of the functional (1) may be expected to reflect
rather general phenomena. Finally, in Chapter 0 we record some of the
definitions and elementary facts from the theory of exterior differential
systems. Again this is only meant to establish language; the more sub-
stantial aspects of the theory are introduced as needed during the

Eext . (L')

In Chapter | we explain the basic setup and derive the main equa-
tions of the theory, the Euler-Lagrange eqiations. Assume given an
exterior differential system (l,n) on a manifold X and denote by
V(l,w) the set of integral manifolds NcX of (l,w). For an example
in addition to the Frenet liftings mentioned above, we consider the

(5)

from R fo R™. on J 0R|R ) we have a natural coordinate system

Lagrange problem: Let JI(R JR™) denote the space of I-jets of maps

(x;yl,..,ym;il,..,Qm) and canonical diffe-ential ideal I, generated
by the Pfaffian forms

o o _ -0 (6)

) = dy -y dx s ¥, L
Setting - w= dx, V(lo,w) consists of I-Jets x > (x, y(x),dy(x)) of

parametrized curves in R". Let Xc:J GRIR ) be a submanlfold and let
(1,w) be the restriction of (lo,w) to X. We may think of X as

defined by equations
Plx,y.¥) = 0, (2)

and then V(I,w) consists of 1-jets of parametrized curves that satisfy

the constraints

( r dY(X)) 6

A specia!'case is when the constraints (2) are of ths form

o} s
ga(y)v 0



b

Ther they correspond to the sub-bundle W span{gi(y)dvi} of the co-
tangent bundle of R"™ (or dually to a sub-bundle of the tangent bundle;
i.e., a distribution). (Hg&g; In general on a manifold M the
diffarential ideal generated by the sections of a sub-bundle W*C:T*(M)
wil] be called a Pfaffian differential system. In this text essentially
all differential ideals will be of this type( However, they will
usualily be defined on manifolds lying cver the one of interest.)

Another special case of (2) is given by the canonical embeddings

. HwRRY e at R

(7)

of higher jet-manifolds into l-jets.

Returning to the general situation, on X we assume given a

differential form ¢ and consider the functional

o(N) = f(p ) NEV(I,w) (3)
N ‘

Evertually we will restrict & to N's ' satisfying suitable boundary
or endpoint conditions, but this is a somewhat subtle matter involving
the structure theory of (I,QQ. In particular, at first glance it
appears to involve the derived flag of |, which roughly speaking tells
how many derivatives are implicit in . Endpoint conditions will be
discussed in Chapter 1V; in Chapter | we simply finesse the matter and

argue formally.

By the variational problem (1,w;9) will be meant the analysis of
the functional (3). For Xc:JIOR,Rm) given by (2) above, if we take

© = L(x,y,y)dx

then (1,w;w) is a classical variational problem with constraints
(Lagrange problem). Another example is given by the functional ().
In general, understanding a variational problem (1,w;9) clearly will
invalve at least some of the structure of (1,0) and how dp relates

to this structure.

The first order of business is to derive the Euler--Lagrange
eqations expressing the condition that N€y¢(1,w) be an extremal of

(1, ,u309); i.e., the idifferential’ of @& should vanish at N, written

o(N) = O . ‘(h)
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For the Lagrance problem this is to some extent accomplished in the
classic treatise [13] and is discussed in many other sources (e.g. [5]
and [40]). The traditiona! method is to use Lagrange multipliers. In
general, the obvious difficulty in deriving the Euler-lLagrange equations
is that only certain normal vector fields to NeX represent infinite-
simal variations of N as an integral manifold of (1,w), {e.g., see
page 344 of [13]). ' In particular there may be no compactly supported
such infinitesimal variations of NE€V(l,w), and consequently at first
glance it would seem that already at this stage we must worry about
endpoint conditions, thereby dragging in the structure theory of  (1,w)
and running the considerable risk of becoming bogged down at the very

outset. 3

This difficulty may be avoided by proceeding indirectly. If we
simply assume the existence in complete generality of Euler-Lagrange
equations having certain functoriality properties, then heuristic
reasoning leads to a uniqué and remarkably symmetrical system of equa-
tions that ''should' be the equations (b).(B) Rather than try to justify
the heuristic‘reasoning at this point, we simply define these to be the
Euler-lLagrange equatfdné associated to the variational probliem (1, w;@)

and proceed to investigate these équations in their own right.

In somewhat more detail, after setting up the variational problem
in Chapter |, Section a), in Chapter 1, Section b) the ''tangent space'’
TN(U(l,w)) is defined to be the kernel of a cer;ain linear difrerential
operator on normal vector fields (cf. (1.b.16); in doing this the
reference [38] has been helpful). In order to better -understand
TN(V(I,u)), we turn.in Chanter |, Section c) to some of the structure
theory of Pfaffian differential systems. |In particular, Cauchy
characteristics, the derived flag, the important concepts of a Pfaffian
system in good form and its basic invariant the Cartan integer Sy and
finally the prolongation of an exterior differential system are dis~
cussed. In .this setting we establish an "infinitesimal Cartan-Kahler
theorem,' which states that a general v€'TN(V(I,w)) depends on s,

arbitrary functions of one variable (plus a certain number of constants).

In Chapter |, Section d) the Euler-lLagrange equations are defined
(cf. (1.d.14)), and a number’ of examples are computed to show that in
classical cases they give the right answer. ‘We also analyze the Euler-

Lagrange equations associated to the functional



oly) = —;—f 2 ds {5)
i

\

where y is a curve on a surface S and k is its geodesic curvature.
When S has constant Gaussian curvature it is found that these equa-
tions may be explicitly integrated by elliptic functions whose modulus

depends on the curvature of S and on an ''energy level."

In Chapter |, Section e) the basic step in this presentation of
the theory is taken by writing the Euler-Lagrange equations as a
Pfaffian differential system (J,w) on an associated manifold Y that
we call the momentum space (cf. Theorem (1.e.9)). (Note: Although we
give the construction of (J,w) on Y explicitly, from the viewpoint
of the general theory of exterior differential systems it may be
explained very simply: The Euler-Lagrange equations (l.d.14) contain
mysterious ''functions Xa to be determined.'' We adjoin the Aa as
new variables, write the resulting equations as a differential system,
and then (J,w) is simply the involutive prolongation of this system.)
For unconstrained and non-degenerate classical variational probléms, Y
is the usual momentum space m><T*(M) where X=RxT(M), but in general
even the dimension of Y will depend on the numerical invariants of
(1,w;9), especially the Cartan integer. We call (J,w) the Euler-
Lagrange system and note the remarkable fact that, despite the apparent
generality of the variational problem (l,w;9), (J,w) is a very
simple standard Pfaffian system: On Y there is canonically given a

1-form by with exterior derivative VY, = dwy, and J is the Cauchy

Y
characteristic system (i.e., W#) of V¥y. In particular this leads
naturally to the definition of a non-degenerate variational problem

(1,w;9) to be one where dim Y=2m+1 (for some m) and where

m
A )" # 0 . (6)

Thus far, all ''natural'' examples have turned out to be non-degenerate
in this sense. By the theorem of Pfaff-Darboux the Euler-lLagrange
system of a non-degenerate variational problem has a standard local

normal form; frequently, this normal form is even global.

Next, also in Chapter |, Section e), we associate to a variational
problem (I,w;p) satisfying a mild internal structural condition (one

that is satisfied in almost all our examples, and is also satisfiedon any



prolongation) a quadratic form Q. If 1 is the Pfaffian differential
ideal generated by a sub-bundle N*C:T*(X) and if the sub-bundle
HTC:W* generates the 15% derived system, then intrinsically Q is a
quadratic form on the rank =5, bundle (w*/w?)*. The variational
problem is defined to be stromgly non-degenerate in case Q is point-
wise non-degenerate, and it is shown that ''strong non-degeneracy = non-
degeneracy.'' Strongly non-degenerate problems turn out to have the

t

important property that only the 15% derived system and not the whole

derived flag intervenes in their basic structural properties.

Before continuing this introduction we should like to emphaéize
our feeling that the numerous examples scattered throughout the text
are of equal importance to the general theory (they may even be more
important). Moreover, these examples as well as the general theory
show that exterior differential systems cénstitute.a computationally
effective and theoretically natural setting for the calculus of variations.

This latter philosophy is by no means original(S)

, and in this regard
we should like to point out the sources [16], [31], and [38] as being
especially helpful to us. Although by and large they deal with uncon-
strained problems (however, see [40]), they contain intrinsic formula-
tions, using jet bundles and differential forms, of the classical theory

and our debt to them is apparent.

As previously mentioned, one of the main concerns of this mono-
graph is in variational problems (t,w;) whose Euler-lLagrange
differential systems (J,w) are explicitly solvable in the old-fashioned
sense of being ''suitably'' integrable by quadratures. Here a most
useful tool is (a suitable generalization of) Emmy Noether's theorem {55],
which associates a i integral of (J,w) to each infinitesimal
symmetry of (l,w;9). In Chapter I, Section b) Noether's theorem is
combined with the general formalism to show that several natural
differen ial-geometric variational problems are quasi-integrable
by quadratures. One of these is the functional, motivated by physical

considerations,

o(y) = %— f «? ds (k= curvature) (7
Sy,

defined for curves yc:E3. A partial result here is due to Radon [57]

and is discussed in Blaschke [3]. Using the formalism developed thus
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far it is essentially known a priori that the Euler-Lagrange equations
associated to (7) are quasi-integrable by quadratures, and it

is a simple matter to carry out the integration. The same is also true
of the variational problem associated to the functional (7) with the
integral constraint

f‘ds = 4 = cerstant
Y

(this one ‘turns out to be equivalent to the unconstrained problem (7)

on a surface of constant curvature), and of the Delauney problem

-

oiyyo= [ ds
b4 : ’ g (8)

with «the constraint «k=constant

which was much discussed classically (a treatment may be found in [14]).
The Euler-Lagrange equations associated to (7) and (8) have 'phase

portraits' .given respectively by elliptic and rational algebraic curves.

These examples begin to make clear the general point that once one

accepts the basic construction

(1,w;9) on Xme—(J,w) on Y,

the computation of examples, o integrals, and later on Jacobi equa-
tions, has an algorithmic cha?acter. Carrying out this algor}thm in
practice has as its essential step the computation of the structure
equations of the differential system (I,w) énd the relation of do
to these equations. Once this is done the determination of (J,w), i
integrals, Jacobi equations, etc. is reduced tc formal algebraic mani-

pulations that seem to always have the same flavoi,

As stated earlier, in this menograph we have restricted attention
to the case of one independent variable. Now it seems likely that even
more interesting problems will arise in higher dimensions, and in this

regard we should like to call attention to the functional(lo)

o(M) = l—{ Irzi* A , (9)

defined on submanifolds an:En+r, where llzzll is the length of the



an fundamental form. The case n=1, k=2 i: the functional (7).

In general we might think of (9) as standing in the same relation to

(7) as does the minimal surface functional

v = [ da . (10)
"

to geodesics. To reduce higher dimensional rroblems to one independent
variable it is natural to look at surfaces of revolution, In the
minimal surface case it is well-known that the Euler—Légrange equations
associated to (10) are integrable by gquadratures (catenary). Using
Noether's theorem we are almost, but not completely, able to integrate
the very interesting Euler-Lagrange equations associated to (9) in'the
case n=k=2 of a surface QF revolution (cf. the end of Chapter |1,

Section a)).

As suggested at. the begiﬁning of the Introduction, one of the goals
of this text is to treat variational problems for functionals (3) where
{ is an invariant exterior differential system and @ is an invariant
form on a Lie group. Of course a principle motivation is the afore-
mentioned fact that general curves 7 in many homogeneous spaces G/H
have canonical liftings to integral manifolds of an invariant differ-
ential system | .on G. Now it is a well-known and beautiful fact
that = left invariant positive definite quadratic Lagrangian system on
any Lie group G has associated Fuler equations that describe the
motion along integral curves of the Euler-Lagrange equations of the
momentum vector A in the dual g* of the Lie algebra y of G. In
particular A moves on a coadjoint orbit (Kostant-Souriau; loc. cit.,
and an Appendix to [2]). In Chapter Ill, Section a) these results
are generalized to the setting of an invariant variational problem
(1,w;9), and then the resulting Euler equations and coadjoint orbit
description are used to integrate several problems, including the Euler-
Lagrange equations assaciated to the functional (7) defined on curves

§ 5 7 " 1
in a Riemannian manifold of constant curvature.( 1)

With regard to the Lagrange proBlem on Lie groups we should like
to call attention to the papers [8], [9], which are related to the

discussion in Chapter Ill, Section a).

‘ Thus far the Euler-Lagrange equations have only been arrived at by

heuristic rcasoning; in particular, they have not yet been shown to
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yield critical values of the functional (3). In fact, without speci-
fying endpoint conditions this doesn't even make sense. Examination of
special cases leads in Chapter IV, Section a) to a natural class of
variational problems (l,w;®), that are said to be well-posed, whose
endpoint conditions are given by the leaves of a canonical foliation

on the momentum space Y. The situation may be summarized by the
¥
s 4
Q X

where Q is the quotient (assumed to exist) by the endpoint foliation.

diagram

We call Q the reduced momentum space, and the understanding of the
geometry of the basic diagram (11) turns out to be the key to the deeper

aspects of the theory.(lz)

For well-posed variational problems it is shown in Chapter 1V,
Section a) that the solutions to the Euler-Lagrange equations do in
fact give critical points of the restriction of the functional (3) to
subsets V(I,w;[A,B])cV(I,w) consisting of integral manifolds satis-
fying endpoint conditions. Following this the endpoint conditions are

(13)

interpreted in a number of examples, and it is proved that a

strongly non-degenerate variational problem is well-posed.

In Chapter IV, Section b) the important concepts of Jacobi jector
fields and comjugate points are defined for well-posed variational
problems. (Actually the definition of the Jacobi equations makes sense
in general.) The point here is to work on the momentum space Y and
not down on X. Not only is this natural theoretically, but as shown
by examples th? z§finition "upstairs'' leads to effective computation of
1

some examples.

In the classical calculus of variations there is an intimate and
very beautiful connection between the Jacobi equatioqs and the an
variation. In the general setting when one tries to compute the Hike
variation down on X this causes considerable difficulty, but when
lifted to Y the situation becomes quite simple and elegant. Again,
as in the classical unconstrained case it is possible to define the
index form as a quadratic form on the space of Jacobi vector fields and

k . nd 5 ke
establish a simple connection between the index and 2 variation,



I

Follownng thlS it is proved in Chapter IV, Section ¢) that, if (1,w;0)
is a strongly non-degenerate variational problem whose quadratic form

Q is positive definite, then for sufficiently ciose endpoint condltlons
a solution to the Euler-Lagrange equations yields a local minimum for
the functional (3). This is an extension of a standard classicalk
result, but it is not just a direct generalization since the point

turns out to be to show that in the diagram (11) there is a (unique)
exterior differential system (G,w) on the reduced momentum space Q
such that

where I‘CI is the ISt derived system (recall that Q is a quadratic
form on (w /w ) ) However, once one insists on setting up the
calculus of varlatlons in the general framework of exterior differential
systems and introducing only those concepts intrinsic to this theory,
results such as the one just mentioned become quite natural and the

proofs not more difficult than in the classical case.

Next, in Chapter 1V, Section d) the analogues of the classical
concept of a field (sometimes called geodesic field) and the Hamilton-
Jacobi equation are defined. Some examplcs are computed, and then
these concepts are used, as . in the classical case, to show that if aN
is a solution to the Euler-Lagrange equations of a positive-definite
strongly non-degenerate variational problem, and if moreover N contains
no pair of conjugate points, then N gives a local minimum for the
functional (3). Again the essential ingredient beyond the classical
case is the relation of the b

(.

derived system of | to the diagram

in summary, it would appear that the concept of a positive strongly
non-degenerate variational problem is a good notion that includes the
classical cases together with the Lagrange problem in sufficient
generality to be useful, while at the same time allowing an extension

of the main points of the classical theory.

Finally, in Chapter IV, Section e) we specifically discuss the
classical Lagrange problem. It is shown that, with a minor modification
of the previous endpoint conditions, this problem fits into the general
theory. It is interesting that our theory does not reduce to the
classical method of Lagrange multipliers; the exact relation together

with several examples are also discussed.



