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Preface

Object-oriented database systems are new software systems integrating tech-
niques from databases, object-oriented languages, programming environments,
and user interfaces. We believe (and hope to convince the reader) that this
particular synthesis of computer science ideas and software tools is larger than
its parts. In fact, it is creating a new generation of database technology.

This book provides an in-depth perspective of the new technology through
the description of a complete example prototype: the object-oriented database
system Oj. The exposition ranges from the data model through the system
implementation to applications. The format of the book is a commented and
edited collection of papers that cover all aspects of the prototype software system
O (focusing on its V1 version). The authors are designers, implementors, and
users of this system.

The articles collected here contain a wealth of essential details on all aspects
of building an object-oriented database system. This is knowledge that can help
researchers, database designers, and users to assess the nature and potential of
the new technology.

Although they have long been successful in business, database systems have
not been fully utilized for advanced applications such as office information sys-
tems (OIS) and computer-aided design (CAD). These applications have new
requirements in design environments, transaction mechanisms, and complex or
multimedia data types. Oy has been built with such advanced applications in
mind. It is not just an extension of a network or relational database system
tailored to specialized applications, but represents an integrated approach to
software engineering that combines object-oriented programming and database
technology.

During the last decade, object-oriented programming concepts (such as
classes of objects with methods and inheritance) and languages (such as Small-
talk or C++) have received a great deal of attention. One reason for the pop-
ularity of object-oriented paradigms is that data abstraction, modularity, and
code reusability are key elements in building large software systems. Languages
and programming environments that emphasize these three principles are bound
to impact experimental computer science. However, one should bear in mind
that the software engineering problems (which object-oriented languages were
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designed to address) are very different from the problems that originally led to
the development of database management systems.

Database systems evolved, quite independently from programming languages,
because of the practical need for efficient manipulation of large amounts of
structured information. The insight that data is an integrated resource which
is independent of application programs has led to more than twenty-five years
of database technology. Four particular themes have been central in database
research and development: (1) data persistence beyond the scope of application
programs, (2) very high level but reasonably fast query languages that are inde-
pendent of the physical organization of the data, (3) efficient secondary storage
management for large amounts of structured information, and (4) transaction
management guaranteeing access by concurrent users, data integrity, security,
and recovery from faults.

This overall emphasis of database technology on performance has made its
integration with object-oriented programming a challenging task. For example,
specific concrete types, such as records and lists, were given prominent roles in
various data description languages (DDLs). This made good implementations
possible, but resulted in reduced flexibility of data abstraction. Reasonably
efficient but ad hoc data manipulation languages (DMLs) were developed. Un-
fortunately most were largely incompatible with the widely used programming
languages. The resulting “impedance mismatch” between the database query
language and the general-purpose or host language motivated the research on
language integration in database systems.

There are some obvious ways of approaching the integration of host and
query language. One approach is to add database features, such as persistence,
to a widely used general-purpose language. Pascal/R and PS-Algol represent
pioneering efforts in this direction. Another approach is to extend a successful
query language toward the closest programming language. For example, the
research on databases and logic programming was largely motivated by the
potential uses of Prolog+database; after all, logic programming is the computing
paradigm closest to relational query languages. From this emerged a number of
interesting prototypes (e.g., LDL or NAIL!).

Here we should point out that adding database capabilities to the appro-
priate general-purpose language can bring significant benefits, beyond any im-
provement of the query/host language interface. If the programming language
was designed a priori to support a rich set of data abstractions, modularity, and
code reusability, then its persistent version is an excellent candidate for nonstan-
dard database applications, such as OIS and CAD. For example, the potential
of rich type systems with semantic features, such as inheritance, was illustrated
in various prototype languages (e.g., ADABTBL, Galileo, Taxis, Trellis/Owl).

Beyond persistence, a database version of a language offers schema-manage-
ment facilities. In this case, the schema is the persistent set of type declarations
and comes with mechanisms for concurrency control, recovery, versioning, li-
brary management, and more generally for schema evolution. Object-oriented
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languages were designed precisely for building and evolving large software sys-
tems; they facilitate the development of programming environments and user
interfaces. In this light, adding persistence and other database functionalities
to Smalltalk in the Gemstone system was a natural, but very important, step
in demonstrating the feasibility of a new technology:

object-oriented database systems (OODBs).

At present there is a lot of experimental work under way which has resulted in
prototype and even commercial systems claiming the OODB label (or claiming
to incorporate major object-oriented programming concepts). There are also
many proposed designs and some theoretical analysis. For example, proceeding
alphabetically, and fully aware of the everchanging nature of this list, we can
mention some of the better-known implemented systems: Cactis, Damokles,
Encore/ObServer, Exodus, G-Base, GemStone, Iris, Oz, Ode, Ontos/VBase,
Orion, Probe, Postgres, and Vision.

We will not attempt a detailed survey or classification of these systems. A
new software technology is typically a creative synthesis of older ideas, tools,
and concepts. Its multiple origins make reaching agreement on its precise spec-
ification impractical and even damaging to the diversity of the field. Therefore,
the goal of this book is not to give a definition of “The OODB” but to clarify
(by example) what seem to be the principal OODB components and the design
choices made in building them.

The first chapter in this book, entitled “The Object-Oriented Database Sys-
tem Manifesto,” was an attempt to outline a commonly accepted part of the
OODB specifications. Historically it followed most of the other papers in this
book, and it is in large part based on the lessons of building a number of
OODBs. Since O is one of these systems, the rest of the book makes concrete
the manifesto’s many and rather forcefully described golden rules.

The book presents a complete and consistent view of the Altair project—a
five-year research and development effort to build O, that started in September
1986. All aspects of the project are described. For consistency, we focus on
the V1 version of the prototype, which was operational in September 1989 and
has been distributed to more than 30 sites. The V1 version followed an initial
experimental V0 version and preceded the various commercial product versions.
As this book goes to press, a commercial release of the industrial version of O,
is available (since June 1991). Many of the functionalities are similar to the
ones described here, although there are some differences.

The most interesting papers related to the O3 project are presented in what
we feel is the most sensible expository sequence. The material in the chapters
consists (primarily but not exclusively) of papers which have appeared in the
proceedings of internationally recognized computer science conferences. The
papers were edited and reformated to make the presentation as uniform as
possible.

The book is divided into six parts. Part 1 consists of two papers: the
“Manifesto” and “The Story of O;.” It is intended to provide a good overall
summary, and we hope it will entice the reader to venture further in the text.
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The papers in parts 2 to 5 are related to each other and to the whole through
short introductions. The introduction to part 2 contains a complete definition of
the O5 data model; the introduction to part 3 contains a detailed discussion of
query/host language integration; and the introductions to parts 4 and 5 contain
summaries of the key technical issues related to the system and the programming
environment, respectively. The introductions also contain comments on the
history of the O, contributions, and they close with a roadmap to each part’s
contents. Part 6 concludes the exposition with descriptions of two applications.

As editors we were faced with the hard task of choosing which parts to
emphasize (through the selection of specific papers) from a large project with
many contributors. For the data model we focused on the clean synthesis of
object-oriented concepts and database complex structures that O, offers, on a
novel analysis of the power of object identity, and on new ways of controlling
schema updates. For the language part we emphasize the multilanguage aspect
of O;—a characteristic that distinguishes it from other efforts in the field. The
papers in this part describe the integration with programming languages such as
C, Basic, and Lisp, as well as the development of specific query languages. For
the system part we have tried to present as many details as possible: on object
manager, object clustering, distribution, alternative architectures, version man-
agement, and concurrency. The programming environment part is devoted to
software engineering tools and the user interface; this reflects the revolutionary
impact that high-resolution bitmap workstations have had on computing and
the importance for any new database technology of a high-quality interface with
the overall programming environment.

In the next chapter we use the golden rules of the object-oriented database
manifesto as a way to introduce the material in this collection. If one reverts
to the original historical sequence, these rules also provide an accurate set of
conclusions. However, let the reader beware. Manifestos invariably reflect the
experiences of their authors but also their biases.

We hope that the computer science experiment described in these pages will
provide readers with the expertise to follow the final rule of the opening man-
ifesto—“Thou shalt question the golden rules”—and to decide for themselves
what object-oriented databases are or should be.

Frangois Bancilhon Claude Delobel Paris Kanellakis
Altair Université de Paris-Sud Brown University
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