~ CYGNUS LYRA
{the Swan) o (the Harp) e yegs
3 S - e »
/ ' ’
o-%° Sheliak

M 57

UILDING AN

glavbASL SYSTEM

dFEE S T ORY QF 05
variable star ®
AQUILA
(the Eagle)

EDITED

BY

L ]
i FRANCOIS BANCILHON

CLAUDE DELOBEL
PARIS KANELLAKIS



BUILDING AN
OBJECT-ORIENTED
DATABASE SYSTEM

THE STORY OF O,

Edited by

Francois Bancilhon
Claude Delobel
Paris Kanellakis

MORGAN KAUFMANN PUBLISHERS
SAN MATEO, CALIFORNIA



Senior Editor: Bruce M. Spatz

Production Manager: Yonie Overton

Cover Design: Wells Larson & Associates

Copyeditor: Tony Hicks

Composition/Indexing: SuperScript Typography
Proofreaders: Lynn Meinhardt, Gary Morris, Susan Festa

Acknowledgements

Chapter 1: M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik, “The Object-
Oriented Database System Manifesto.” © 1990, Elsevier North Holland. With permission of the
authors and the publisher from Proceedings of the First International DOOD Conference, Kyoto,
Japan, December 1989, edited by J. Kim, J. M. Nicholas, and S. Nishio. Chapter 2: O. Deux et al.,
“The Story of 03.” © 1990, IEEE. With permission of the authors and the publisher from Trans-
actions on Knowledge and Data Engineering, 2(1), March 1990: 91-108. Chapter 4: C. Lécluse,
P. Richard, and V. Vélez, “Oz, An Object-Oriented Data Model.” © 1988, Association for Comput-
ing Machinery, Inc. With permission of the authors and the publisher from Proceedings of the ACM
SIGMOD Conference, Chicago, Illinois, June 1988. Chapter 5: S. Abiteboul and P. Kanellakis,
“Object Identity as a Query Language Primitive.” © 1989, Association for Computing Machin-
ery, Inc. With permission of the authors and the publisher from Proceedings of the ACM SIGMOD
Conference, Portland, Oregon, June 1989. Chapter 6: S. Abiteboul, P. Kanellakis, and E. Waller,
“Method Schemas.” @© 1990, Association for Computing Machinery, Inc. With permission of
the authors and the publisher from Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART
Conference on Principles of Database Systems, Nashville, Tennessee, April 1990. Chapter 7:
R. Zicari, “A Framework for Oz Schema Updates.” @ 1991, IEEE. With permission of the author
and the publisher from Proceedings of the 7th IEEE International Conference on Data Engineer-
ing, April 8-12, 1991, Kobe, Japan. Chapter 10: G. Barbedette, “LispO2, A Persistent Object-
Oriented Lisp.” © 1989, Springer-Verlag. With permission of the author and the publisher from
Proceedings of the Second EDBT Conference, Venice, Italy, March 1989. Chapter 12: S. Cluet,
C. Delobel, C. Lécluse, and P. Richard, “Reloop, An Algebra-Based Query Language for an Object-
Oriented Database System.” @ 1990, Elsevier North Holland. With permission of the authors
and the publisher from the Proceedings of the First International DOOD Conference, Kyoto,
Japan, December 1989, edited by J. Kim, J. M. Nicholas, and S. Nishio. Chapter 20: M. Cart and
J. Ferrié, “Integrating Concurrency Control into an Object-Oriented Database System.” © 1989,
Springer-Verlag. With permission of the authors and the publisher from Proceedings of the Sec-
ond EDBT Conference, Venice, Italy, March 1989. Chapter 22: D. Plateau, R. Cazalens, J. C.
Mamou, and D. Tallot, “Building User Interfaces with the Looks Hyper-Object System.” © 1990,
Springer-Verlag. With permission of the authors and the publisher from Eurographics Workshop
on Object-Oriented Graphics, Konigswinter, Germany, June 1990. Chapter 26: G. Arango,
“Self-Explained Toolboxes: A Practical Approach to Reusability.” ® 1990, TOOLS/90 Société
des Outils du Logiciel. With permission of the author and the publisher from Proceedings of the
TOOLS 90 Conference, Paris, 1990. Chapter 28: M. Scholl and A. Voisard, “Object-Oriented
Database System for Geographic Applications: An Experience with O.” © 1990, Springer-Verlag.
With permission of the authors and the publisher from International Workshop on Geographical
Databases (Esprit Basic Research Series), Capri, Italy, May 16-17, 1991.

Morgan Kaufmann Publishers, Inc.
Editorial Office:

2929 Campus Drive, Suite 260

San Mateo, CA 94403

©1992 Morgan Kaufmann Publishers, Inc.

All rights reserved

Printed in the United States of America

No part of this publication may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means—electronic, mechanical, photocopying,
recording, or otherwise—without the prior written permission of the publisher.

96 95 94 93 92 54321

Library of Congress Cataloging in Publication Data is available for this book.
ISBN 1-55860-169-4



BUILDING AN
OBJECT-ORIENTED
DATABASE SYSTEM

THE STORY OF O,




THE MORGAN KAUFMANN SERIES IN
DATA MANAGEMENT SYSTEMS

Series Editor, Jim Gray

BUILDING AN OBJECT-ORIENTED DATABASE SYSTEM: THE STORY OF Oy
Edited by Frangois Bancilhon (O, Technology),

Claude Delobel (O Technology), and

Paris Kanellakis (Brown University)

TRANSACTION PROCESSING
Jim Gray (Digital Equipment Corporation) and
Andreas Reuter (Stuttgart University)

DATABASE TRANSACTION MODELS FOR ADVANCED APPLICATIONS
Edited by Ahmed K. Elmagarmid (Purdue University)

A GUIDE TO DEVELOPING CLIENT/SERVER SQL APPLICATIONS
Setrag Khoshafian (Portfolio Technologies, Inc.),

Arvola Chan (Versant Object Technology),

Anna Wong (CLaM Associates), and

Harry K. T. Wong (Nomadic Systems)

THE BENCHMARK HANDBOOK FOR DATABASE AND TRANSACTION
PROCESSING SYSTEMS
Edited by Jim Gray (Digital Equipment Corporation)

CAMELOT AND AVALON: A DISTRIBUTED TRANSACTION FACILITY
Edited by Jeffrey L. Eppinger (Transarc Corporation),

Lily B. Mummert (Carnegie Mellon University),

and Alfred Z. Spector (Transarc Corporation)

DATABASE MODELING AND DESIGN: THE ENTITY-RELATIONSHIP
APPROACH
Toby J. Teorey (University of Michigan)

READINGS IN OBJECT-ORIENTED DATABASE SYSTEMS
Edited by Stanley B. Zdonik (Brown University) and
David Maier (Oregon Graduate Center)

READINGS IN DATABASE SYSTEMS
Edited by Michael Stonebraker (University of California at Berkeley)

DEDUCTIVE DATABASES AND LoGIC PROGRAMMING
Jack Minker (University of Maryland)



Preface

Object-oriented database systems are new software systems integrating tech-
niques from databases, object-oriented languages, programming environments,
and user interfaces. We believe (and hope to convince the reader) that this
particular synthesis of computer science ideas and software tools is larger than
its parts. In fact, it is creating a new generation of database technology.

This book provides an in-depth perspective of the new technology through
the description of a complete example prototype: the object-oriented database
system Oj. The exposition ranges from the data model through the system
implementation to applications. The format of the book is a commented and
edited collection of papers that cover all aspects of the prototype software system
O (focusing on its V1 version). The authors are designers, implementors, and
users of this system.

The articles collected here contain a wealth of essential details on all aspects
of building an object-oriented database system. This is knowledge that can help
researchers, database designers, and users to assess the nature and potential of
the new technology.

Although they have long been successful in business, database systems have
not been fully utilized for advanced applications such as office information sys-
tems (OIS) and computer-aided design (CAD). These applications have new
requirements in design environments, transaction mechanisms, and complex or
multimedia data types. Oy has been built with such advanced applications in
mind. It is not just an extension of a network or relational database system
tailored to specialized applications, but represents an integrated approach to
software engineering that combines object-oriented programming and database
technology.

During the last decade, object-oriented programming concepts (such as
classes of objects with methods and inheritance) and languages (such as Small-
talk or C++) have received a great deal of attention. One reason for the pop-
ularity of object-oriented paradigms is that data abstraction, modularity, and
code reusability are key elements in building large software systems. Languages
and programming environments that emphasize these three principles are bound
to impact experimental computer science. However, one should bear in mind
that the software engineering problems (which object-oriented languages were



xxii PREFACE

designed to address) are very different from the problems that originally led to
the development of database management systems.

Database systems evolved, quite independently from programming languages,
because of the practical need for efficient manipulation of large amounts of
structured information. The insight that data is an integrated resource which
is independent of application programs has led to more than twenty-five years
of database technology. Four particular themes have been central in database
research and development: (1) data persistence beyond the scope of application
programs, (2) very high level but reasonably fast query languages that are inde-
pendent of the physical organization of the data, (3) efficient secondary storage
management for large amounts of structured information, and (4) transaction
management guaranteeing access by concurrent users, data integrity, security,
and recovery from faults.

This overall emphasis of database technology on performance has made its
integration with object-oriented programming a challenging task. For example,
specific concrete types, such as records and lists, were given prominent roles in
various data description languages (DDLs). This made good implementations
possible, but resulted in reduced flexibility of data abstraction. Reasonably
efficient but ad hoc data manipulation languages (DMLs) were developed. Un-
fortunately most were largely incompatible with the widely used programming
languages. The resulting “impedance mismatch” between the database query
language and the general-purpose or host language motivated the research on
language integration in database systems.

There are some obvious ways of approaching the integration of host and
query language. One approach is to add database features, such as persistence,
to a widely used general-purpose language. Pascal/R and PS-Algol represent
pioneering efforts in this direction. Another approach is to extend a successful
query language toward the closest programming language. For example, the
research on databases and logic programming was largely motivated by the
potential uses of Prolog+database; after all, logic programming is the computing
paradigm closest to relational query languages. From this emerged a number of
interesting prototypes (e.g., LDL or NAIL!).

Here we should point out that adding database capabilities to the appro-
priate general-purpose language can bring significant benefits, beyond any im-
provement of the query/host language interface. If the programming language
was designed a priori to support a rich set of data abstractions, modularity, and
code reusability, then its persistent version is an excellent candidate for nonstan-
dard database applications, such as OIS and CAD. For example, the potential
of rich type systems with semantic features, such as inheritance, was illustrated
in various prototype languages (e.g., ADABTBL, Galileo, Taxis, Trellis/Owl).

Beyond persistence, a database version of a language offers schema-manage-
ment facilities. In this case, the schema is the persistent set of type declarations
and comes with mechanisms for concurrency control, recovery, versioning, li-
brary management, and more generally for schema evolution. Object-oriented



PREFACE xxiil

languages were designed precisely for building and evolving large software sys-
tems; they facilitate the development of programming environments and user
interfaces. In this light, adding persistence and other database functionalities
to Smalltalk in the Gemstone system was a natural, but very important, step
in demonstrating the feasibility of a new technology:

object-oriented database systems (OODBs).

At present there is a lot of experimental work under way which has resulted in
prototype and even commercial systems claiming the OODB label (or claiming
to incorporate major object-oriented programming concepts). There are also
many proposed designs and some theoretical analysis. For example, proceeding
alphabetically, and fully aware of the everchanging nature of this list, we can
mention some of the better-known implemented systems: Cactis, Damokles,
Encore/ObServer, Exodus, G-Base, GemStone, Iris, Oz, Ode, Ontos/VBase,
Orion, Probe, Postgres, and Vision.

We will not attempt a detailed survey or classification of these systems. A
new software technology is typically a creative synthesis of older ideas, tools,
and concepts. Its multiple origins make reaching agreement on its precise spec-
ification impractical and even damaging to the diversity of the field. Therefore,
the goal of this book is not to give a definition of “The OODB” but to clarify
(by example) what seem to be the principal OODB components and the design
choices made in building them.

The first chapter in this book, entitled “The Object-Oriented Database Sys-
tem Manifesto,” was an attempt to outline a commonly accepted part of the
OODB specifications. Historically it followed most of the other papers in this
book, and it is in large part based on the lessons of building a number of
OODBs. Since O is one of these systems, the rest of the book makes concrete
the manifesto’s many and rather forcefully described golden rules.

The book presents a complete and consistent view of the Altair project—a
five-year research and development effort to build O, that started in September
1986. All aspects of the project are described. For consistency, we focus on
the V1 version of the prototype, which was operational in September 1989 and
has been distributed to more than 30 sites. The V1 version followed an initial
experimental V0 version and preceded the various commercial product versions.
As this book goes to press, a commercial release of the industrial version of O,
is available (since June 1991). Many of the functionalities are similar to the
ones described here, although there are some differences.

The most interesting papers related to the O3 project are presented in what
we feel is the most sensible expository sequence. The material in the chapters
consists (primarily but not exclusively) of papers which have appeared in the
proceedings of internationally recognized computer science conferences. The
papers were edited and reformated to make the presentation as uniform as
possible.

The book is divided into six parts. Part 1 consists of two papers: the
“Manifesto” and “The Story of O;.” It is intended to provide a good overall
summary, and we hope it will entice the reader to venture further in the text.



xxiv PREFACE

The papers in parts 2 to 5 are related to each other and to the whole through
short introductions. The introduction to part 2 contains a complete definition of
the O5 data model; the introduction to part 3 contains a detailed discussion of
query/host language integration; and the introductions to parts 4 and 5 contain
summaries of the key technical issues related to the system and the programming
environment, respectively. The introductions also contain comments on the
history of the O, contributions, and they close with a roadmap to each part’s
contents. Part 6 concludes the exposition with descriptions of two applications.

As editors we were faced with the hard task of choosing which parts to
emphasize (through the selection of specific papers) from a large project with
many contributors. For the data model we focused on the clean synthesis of
object-oriented concepts and database complex structures that O, offers, on a
novel analysis of the power of object identity, and on new ways of controlling
schema updates. For the language part we emphasize the multilanguage aspect
of O;—a characteristic that distinguishes it from other efforts in the field. The
papers in this part describe the integration with programming languages such as
C, Basic, and Lisp, as well as the development of specific query languages. For
the system part we have tried to present as many details as possible: on object
manager, object clustering, distribution, alternative architectures, version man-
agement, and concurrency. The programming environment part is devoted to
software engineering tools and the user interface; this reflects the revolutionary
impact that high-resolution bitmap workstations have had on computing and
the importance for any new database technology of a high-quality interface with
the overall programming environment.

In the next chapter we use the golden rules of the object-oriented database
manifesto as a way to introduce the material in this collection. If one reverts
to the original historical sequence, these rules also provide an accurate set of
conclusions. However, let the reader beware. Manifestos invariably reflect the
experiences of their authors but also their biases.

We hope that the computer science experiment described in these pages will
provide readers with the expertise to follow the final rule of the opening man-
ifesto—“Thou shalt question the golden rules”—and to decide for themselves
what object-oriented databases are or should be.

Frangois Bancilhon Claude Delobel Paris Kanellakis
Altair Université de Paris-Sud Brown University



Acknowledgements

The O system is the result of a group effort and this book is the collective work
of all those who contributed to the Altair! project. The editors wish to thank
the following people.

The technical staff and the researchers who participated in the design and/or
implementation of the system: Gustavo Arango, Gilles Barbedette, Véronique
Benzaken, Guy Bernard, Pascale Biriotti, Patrick Borras, Patrice Boursier,
Philippe Bridon, René Cazalens, Sophie Cluet, Vineeta Darnis, Christine Del-
court, Anne Doucet, Denis Excoffier, Philippe Futtersack, Sophie Gamerman,
Olivier Grémont, Constance Grosselin, Gilbert Harrus, Laurence Haux, John
Ioannidis, Mark James, Geneviéve Jomier, Jean Marie Larchevéque, Christophe
Lécluse, Carol Lepenant, Didier Lévéque, Joélle Madec, Jacques Madelaine,
Jean-Claude Mamou, Jean-Baptiste N’dala, Patrick Pfeffer, Didier Plateau,
Bruno Poyet, Michel Raoux, Philippe Richard, Michel Scholl, Dominique Stéve,
Didier Tallot, Fernando Vélez, and Roberto Zicari.

The students who participated in the project: Laurent Alonzo, Thomas
Baudel, Yves Branwschweig, Yveline Cessou, Xavier Crinon, Fabrice Laurence,
Sabine Letellier, Vincent Marfaing, Eli Nakdimon, Marc Poinot, and Yves-Henri
Saliou.

The consultants who helped at many stages of the design: Michel Adiba,
Malcolm Atkinson, Haran Boral, Peter Buneman, George Copeland, Joélle
Coutaz, David DeWitt, Gilles Kahn, Sacha Krakowiak, David Maier, and Marc
Shapiro.

The colleagues who agreed to have their papers included in this book: Serge
Abiteboul, Michéle Cart, Wojciech Cellary, Klaus Dittrich, Jean Ferrié, Stan
Zdonik.

The administrative staff, thanks to whom the group was able to operate
efficiently: Eve-Lyne Daneels, Florence Deshors, Héléne Gans, Karine Maillard,
Pauline Turcaud, and Carole Viard.

1Altair is a consortium funded by IN2 (a Siemens subsidiary), INRIA (Institut National
de Recherche en Informatique et Automatique), and LRI (Laboratoire de Recherche en In-
formatique, University of Paris-Sud and CNRS). It is a five-year research and development
project started in September 1986. Bull joined the consortium in 1989. Its goal is to design
and implement a next-generation database management system. The project is supported by
the members of the consortium, by a Eureka convention, BD 11, and by two Esprit projects,
FIDE and ITHACA.



xxvi ACKNOWLEDGEMENTS

The editors would also like to thank the Defense Advanced Research Projects
Agency, the National Science Foundation, and the European Community Es-
prit projects for their support of the task of editing and commenting on (via
introductions) the material in this volume.

Finally, detailed credits for the various research activities described in this
book are listed under “Acknowledgements” at the end of each chapter.



Preface

Contents

Acknowledgements

Part I

Introduction to Object-Oriented Database Systems

1 The Object-Oriented Database System Manifesto
Atkinson, Bancilhon, DeWitt, Dittrich, Maier, and Zdonik
1 Introduction
2 Mandatory Features: The Golden Rules

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

Complex Objects

Object Identity

Encapsulation

Types and Classes

Class or Type Hierarchies
Overriding, Overloading, and Late Binding
Computational Completeness
Extensibility

Persistence

Secondary Storage Management
Concurrency

Recovery

Ad Hoc Query Facility
Summary

3 Optional Features: The Goodies

3.1
3.2
3.3
3.4
3.5

Multiple Inheritance

Type Checking and Type Inferencing
Distribution

Design Transactions

Versions

4 Open Choices

4.1

Programming Paradigm

xxi

XXv



vi

CONTENTS

4.2 Representation System
4.3 Type System
4.4 Uniformity

Conclusion
Acknowledgements
References

2 The Story of O,

Deuz et al.
1 Introduction
1.1 A System Overview
2 A Programmer’s View of the System
2.1 The Data Model and the Data Definition Language
2.2 The Oy Languages
2.3 Development and Execution Modes
2.4 Distribution
3 Looks, the User Interface Generator
3.1 Major Features of Looks
3.2 A Simple Programming Example
4 OOPE, the Programming Environment
4.1 The OOPE Design Principles
4.2 The Programming Functionalities
4.3 The Programming Tools
5 The Implementation
5.1 System Decomposition and Process Layout
5.2 The Schema Manager
5.3 The Object Manager
6 Performance of the O; Prototype
6.1 Simple Tests
6.2 Wisconsin Benchmark Selection Times
7 Conclusion
8 Acknowledgements
References

Part II The O, Data Model

3 Introduction to the Data Model
Kanellakis, Lécluse, and Richard

1
2
3

Historical View of the Oy Approach
Objects Versus Values in OODBs
The O2 Data Model

16
17
17

17
18
18

21

21
21
22
23
29
33
33
34
34
36
37
38
38
39
41
43
44
44
52
52
54
55
56

56

59

61

62
63
65



CONTENTS vii

3.1 Values and Objects 65
3.2 The Syntax of Types and Classes 67
3.3 Class Hierarchy and Subtyping 67
3.4 The Semantics of Types and Classes 69
3.5 Methods 70
3.6 Database Schema 72
3.7 Instances of a Database Schema 73
4 Acknowledgements 74
5 A Roadmap for Part 2 74
References 75
4 O,, an Object-Oriented Data Model 77
Lécluse, Richard, and Vélez
1 Introduction 7
2 Overview 79
3 Objects 80
4 Types 83
4.1 Type Structures 85
4.2 Methods 89
4.3 Type Systems 92
5 Databases 93
6 Conclusion 95
7 Acknowledgements 96
References 96
5 Object Identity as a Query-Language Primitive 98
Abiteboul and Kanellakis
1 Introduction 98
1.1 The Structural Part 100
1.2 The Operational Part 101
1.3 Expressive Power 103
1.4 Type Inheritance 104
1.5 Value-Based versus Object-Based 104
1.6 Relation to Oy 104
2 An Object-based Data Model 105
3 The Identity Query Language 107
3.1 Syntax 108
3.2 Semantics 109
3.3 Shorthands and Examples 111
4 IQL Expressibility 114
5 The Sublanguages of IQL 118

6 Type Inheritance 119



viii

CONTENTS

7 A Value-based Data Model
8 Acknowledgements
References

6 Method Schemas
Abiteboul, Kanellakis, and Waller

1 Introduction
2 Method Schemas

2.1
2.2
2.3
24

D O Wb W

6.1
6.2

Syntax
Semantics
Consistency
Variations

Recursion-Free Schemas
Schemas with Recursion
Covariance

Practical Issues

Avoiding Recursion
Updates

7 Acknowledgements

References

7 A Framework for Schema Updates in an Object-Oriented

Database System

Zicari

1 Introduction

1.1
1.2
1.3

2 Ensuring Structural and Behavioral Consistency

2.1
2.2
23

Preliminary Oz Concepts
Updates: What Do We Want to Achieve?
Organization of the Paper

Structural Consistency
Behavioral Consistency
The Interactive Consistency Checker

3 Schema Updates

3.1
3.2
3.3
3.4

Changes to the Type Structure of a Class
Changes to the Methods of a Class
Changes to the Class-Structure Graph
Basic Schema Updates

4 Method Updates

4.1
4.2

Adding a Method in a Class
Dropping a Method from a Class

5 Type Updates

5.1

Structural Consistency

122
124
124

128

128
131
131
133
135
135
136
138
139
140
140
142
143
143

146

146
146
148
149

149
149
151
151
152
152
152
153
153
154
154
156
159
159



CONTENTS ix

5.2 Behavioral Consistency 160
6 Class Updates 162
6.1 Addition of an Edge 163
6.2 Removal of an Edge 163
6.3 Addition of a Node 168
6.4 Deletion of a Node 169
7 Implementation Issues 171
8 Related Work 172
9 Conclusion and Future Work 174
9.1 Data Structure 174
9.2 Update-Execution Model 174
9.3 Object Updates 175
9.4 High-Level Restructuring 175
9.5 Tools 176
9.6 Incomplete Types 176
10 Acknowledgements 176
References 177
Appendix: Cost Analysis 179
A.1 Architecture 179
A.2 Parameters 179
A.3 Assumptions 180
A.4 Notations 180
A5 Costs 181
Part III The Languages 183
8 Introduction to Languages 185
Bancilhon and Maier
1 A Brief Survey 187
2 Historical View of the O; Approach 188
2.1 The Oz Database Programming Language 188
2.2 The Oz Query Language 190
3 Language Integration in OODBs 190
4 A Roadmap for Part 3 192
References 193
9 The O; Database Programming Language 195
Lécluse and Richard
1 Introduction 195
2 Objects and Values in O, 196

3 Types and Classes 197



9
10

CONTENTS

3.1 The Schema Definition Language
3.2 Object Creation

3.3 Naming and Persistence
Manipulation of Objects and Values
4.1 Method Definition

4.2 Manipulating Values

4.3 Iterator

Subtyping and Inheritance

5.1 Subtyping

5.2 Inheritance

5.3 Late Binding

Interesting Features

6.1 Exceptional Attributes

6.2 Exceptiona] Methods

Type Checking

Related Work
8.1 Other OODBs
8.2 Other Systems

Conclusion
Acknowledgements
References

10 Lisp O2: A Persistent Object-Oriented Lisp
Barbedette

1
2

Introduction

Object-Oriented Features

2.1 Objects and Classes, Values and Types
2.2 Inheritance

2.3 Operation Implementations: Methods
2.4 Object Creation: Constructor

2.5 Coping with Faults: Exceptions

2.6 Type-Checking Methods

Integrating Persistence Facilities in the Language
System Design

4.1 The Persistent Layer

4.2 The Object Layer

Related Work

Future Work

Acknowledgements

References

198
199
199
200
200
201
202
203
203
204
205
206
206
206
207
207
207
210
211
212
212

215

215
216
217
219
222
223
225
225
227
228
228
229
230
231
231
232



