

0o n ;
Q950175

John Beidler

DATA STRUCTURES
AND ALGORITHMS

An Object-Oriented Approach
Using Ada 95

=+ X J
4 With 29 Illustrations

L

I

E9960175

il

&) Springer

John Beidler

Department of Computing Sciences
University of Scranton

Scranton, PA 18510-4664

USA

Series Editors

David Gries

Fred B. Schneider

Department of Computer Science
Cornell University

Upson Hall

Ithaca, NY 14853-7501

USA

Library of Congress Cataloging-in-Publication Data
Beidler, John, 1941-

Data structures and algorithms : an object-oriented approach using
Ada 95 / John Beidler.

p- cm. — (Undergraduate texts in computer science)

Includes bibliographical references and index.

ISBN 0-387-94834-1 (hardcover : alk. paper)

1. Object-oriented programming (Computer science) 2. Ada
(Computer progam language) 3. Data structures (Computer science)
4. Computer algorithms. I. Title. II. Series.

QA76.64.B43 1996
005.13°3—dc20 96-23982

Printed on acid-free paper.

© 1997 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whele or in part without the written permission of
the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not
especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchan-
dise Marks Act, may accordingly be used freely by anyone.

Production managed by Bill Imbornoni; manufacturing supervised by Joe Quatela.
Camera-ready copy prepared using the author’s WordPerfect files.

Printed and bound by R.R. Donnelley and Sons, Harrisonburg, VA.

Printed in the United States of America.

987654321

ISBN 0-387-94834-1 Springer-Verlag New York Berlin Heidelberg SPIN 10523571

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan

Paris

Santa Clara
Singapore
Tokyo

Editors
David Gries
Fred B. Schneider

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms
Kozen, Automata and Computability
Merritt and Stix, Migrating from Pascal to C++

Zeigler, Objects and Systems

(Pauling-Bass) Lois Music
As performed by the Shirelles
transcribed by Joan Roccasalvo, CSJ

Preface

Picture this: sitting in a cottage by a peat fire in a small farm village just outside
of Limerick City in Ireland, with a pint of Guinness, a copy of Booch’s software
components in Ada book, and a laptop computer. That picture describes how I
spent part of my sabbatical during the 1989-1990 academic year, after spending
the summer of 1989 working with an Ada programming group at the Naval
Surface Warfare Center in Dahlgren, Virginia. This was preceded by many years
of looking at ways of improving the Data Structures and Algorithms course as
more and more material filtered out of that course and into the CS 2 course. That
year in Limerick provided the opportunity to think through the variety of issues
that led to this book.

The Data Structures and Algorithms course is commonly referred to as the
ACM CS 7 course. During the past decade, a large amount of material has
moved from the CS 7 course to the CS 2 course. [viewed this relationship
between the CS 2 and CS 7 courses as an opportunity to enhance the CS 2 course
and modernize the CS 7 course. Two elements that played key roles in this
process are software reuse and object-oriented programming.

My experiences at Dahlgren, during the summer of 1989, convinced me of
Ada’s value as an educational tool. I found Ada’s features to be great tools for
enhancing and presenting software development concepts. ~Of particular
importance, I found Ada’s encapsulation features and the ability to present
specifications without even a hint of implementational details an extremnely
important software abstraction feature.

While I was on my sabbatical, my colleagues back at the University of
Scranton made the decision to select Ada as the core programming language for

viii

Preface

the CS 2 and CS 7 courses. We had been using Modula-2 since 1980. Dr.
Dennis Martin played a lead role in making the case for the transition to Ada.
In fact, the year I was away was a significant year for our department, as we
moved to new quarters with new laboratories and a fully networked environment.
I'd like to recognize the key role Rich Plishka played in putting it all together.

Between 1990 and 1992 we received two Software Engineering and Ada
grants for the development of support resources for the CS 2 and CS 7 courses.
This provided us with an opportunity to build upon the resources that were
constructed during my sabbatical. In 1992 we started refocusing our materials
toward the coming transition to Ada 9X, today we know as Ada 95. I must
acknowledge the direct and indirect roles Bob McCloskey played in the
development of the data structure suites that I use to support both courses.

This transition to an Ada 95-based resource lead, in the fall of 1994—to
experimentation with packages that employed type extension in lieu of generic
instantiation as the method of interfacing reusable software components to the
needs of clients—eventually led to the construction of a second suite of data
structure components that has a very distinct object-oriented flavor.

The Course

The course implied by this book requires substantial software support. I spent my
1989-1990 sabbatical constructing an outline for the course and course support
materials, including a component suite, based upon the Booch components,
intended to meet educational needs, but with industrial-strength features. 1 wanted
these components to provide good object-oriented support and software reuse
experience for students in the CS 2 and CS 7 courses.

It is assumed that the reader of this book is familiar with the topics normally
covered in a strong CS 2 course. We expect the CS 2 course to be a broad-based
introduction to the discipline with a strong emphasis on analysis, design,
abstraction, and the basics of formal specifications, and with a software
engineering flavor. In the CS 2 course the students gain a fundamental
understanding of the essential concepts of the basic logical data structures, like
stacks, queues, lists, and trees. This book moves forward from that foundation
with an in-depth presentation of representation, encapsulation, and measurement
issues.

There are four recurring themes in this book: abstraction, implementation,
encapsulation, and measurement. One significant difference you may find
between this book and others is that this book addresses a great variety of

Preface ix

encapsulation issues and separates representational issues from encapsulation
issues.

There is more than enough material in this book to support a CS 7 course.
My preference is to cover the first six chapters in the first half of the semester.
My experience has been that the first two chapters must be addressed carefuily.
Students never seem to fully grasp the implications of static representations, the
fundamental reasons behind the need for both private and limited private
types, and the subtleties of tagged and controlled types. While covering Chapters
3 through 6, I emphasize encapsulation and the variety of implementation and
measurement issues.

During the second half of the semester, I cover about 80 percent of the
material in the remaining chapters, leaving the uncovered material as the basis for
individual and team projects. For example, in Chapter 7 I may cover the AVL
tree restructuring in depth, then give a cursory presentation of B-trees, leaving the
construction of B-tree algorithms as an assignment. Another year I will switch
and do B-trees in depth and give various AVL-based assignments.

Support

This book describes, and is supported by, two approaches to encapsulation, the
traditional encapsulation of reusable Ada resources in generic packages and a
polymorphic approach that makes use of Ada 95’s object-oriented features. Both
suites may be obtained across the World Wide Web from

http://academic.uofs.edu/faculty/beidler/

by following the Ada link. The packages may also be obtained through an
anonymous ftp from

tp.cs.uofs.edu

in the pub/ada directory. For those without network access, the data structure
component suites may also be obtained by contacting the author at (717) 941-
7774.

Gratia Tibi Ago . ..

So many peopie contributed in so many ways to this manuscript. Of particular
note are the many students who suffered through many variations of course notes

Preface

in Cmps 240 from 1991 to 1996. They were the biggest contributors. They
pushed, and questioned. and made being an educator a real treat.

I'd like to thank my departmental colleagues. I could not forget our
departmental support staff of Mary Alice Lynott and Bill Gunshannon. Without
Mary Alice’s assistance at critical times, and Bill’s work in keeping our "ancient"
UNIX systems alive, I wonder if this book would ever have been completed. If
it was not for our department’s unofficial open-door policy, I could not have tried
out many ideas on Rich, Bob, Paul, Bi, Dennis, and Dick. I would also like to
thank Chip for allowing me to try to improve his racquetball game.

My sabbatical in Ireland played an important role in getting this book started.
If Mary Engel, the associate dean of the College of Arts and Sciences, had not
met with Barra O’Cinneadie of the University of Limerick, my sabbatical would
not have come to be. The year at Limerick was made both a pleasure and an
academic success by such good folks as Wally Ryder, Tony Cahill, Norah
Powers, and Mike Coughlin. Nor can I forget the invaluable contribution of
Fionbarr McLaughlin and Liam O’Brien in teaching me to play squash.

In the last few years, numerous discussions with three good "Ada" friends
helped this project along. They are John McCormack, Mike Feldman, and Nick
DeLillo. Nick and I, along with our wives, share a full appreciation of the other
CIA, The Culinary Institute of America. Now if only he could learn to make a
good cappuccino.

Of course, what makes this venture so worthwhile is the support and love of
my family. They may be added to the dedication, if you figured it out, by
replacing the word "one" with the word "ones" when you sing the song. Now
that this book is completed, you may find it difficult getting in touch with me.
I'm busy playing with my grandchildren.

Jack Beidler
Summer 1996

Contents

Preface

1 Preliminaries
1.1 Object-Oriented Software Development
1.1.1 The Object-Oriented Concept
1.1.2 Objects and Their Attributes
1.1.3 Operations

1.2 Problem Analysis
1.3 Solution Designouiuiiuiin e
1.4 Design to Implementation
1.5 Software Maintenance
1.6 Data Structures and Algorithms
.
1.8 Simple Static TYPES oot
1.8.1 Ordinal Objects
1.8.2 Access TYPES .. ovvvt ittt e e e
1.8.3 Nonordinal Objectsoouuruiie
1.9 Structured Data Typesouiine e
LY BEBIIE 5a0en s nemossmnsssnssssesenssnn i 6bamns g
1.9.1.1 Constrained Arraysc.ouururuonnnni...

1.9.1.2 Unconstrained (Generic) AITays

LO2 RECOFAS «niiwcvinvesnsosunnissssssnnnmmnnnnooonsn
1.9.2.1 Simple Record Structure

1.9.2.2 Record Discriminants

1.9:23 Variant RECOMAS .o wsummess oo vn vnessssssssiessns

1.9.2.4 Protected Types

1.9.3 Compound Structures
1.10 Explorations

..............................

2 Encapsulation
2.1 Comeept ...
2.2 Packaging Fundamentals
2.2.1 Initalize/Finalize 0.

Xii Contents

2.2.2.1 Private Typesand Equality

2.2.2.2 Issues Surrounding Limited Private Types

2.3 Using Generic Packagesooitiiii i,
2.4 Object-Oriented SUPPOItottt et
2.4.1 Tagged TYPES . o v iii ettt e et
2472 AbSIraCt TYDSS csswuw s ssessessmamomnwnsssosinsssssssss
2.4.3 Abstract Subprograms
2:4:4 YCLASS wwes@mss s 555535 Las@@sEEd 885555 0is8.5s 585
2.45 Dynamic Dispatch i
2.46 Controlled Typesot i ittt it ittt i it i e
2.5 Using Object-Oriented Packagingcciiviiin..,
2.5.1 Polymorphic Versus Generic Packaging

2.6 A Taxonomy of Client/Package Visibility0........
2.6.1 Safe Handling of User Objectso
26.1.] PEIVELE ..o ivmmmpiiniReida 5 6 55 55 58855 o 05 e e

2.6.1.2 Limited Privateociiereeenneeenneennnnns

2.6.1.3 Tagged .. i ittt et e e e

2.6.1.4 Controlledt tie e e

2.6.2 Safe Encapsulation of Data Structureso....
2.6.2.1 pPrivate RSN L HEEE AN SRS SRR

2622 Limited Private «.. cusss s isoasunominssssnssans

21623 CONEFOLLET iiiiiniiwi i dwiiin d § 5 o 0r o oo ol 510056 0 05 51 o 0 160603 s st 00

2.6.2.4 Encapsulated i e

2.7 Composability . .. oo v i e e e e
2.8 Child Units . ..o\ttt et ittt e e e e i
2.8.1 GenericChild Units

2.9 EXDIOTALIONS .5 s vvrvamummm e o s 6 565 ¢ $ Bsmsms s 6 aess s s8m a3

3 Stacks

3.1 Linear SHUCIUIES .« & v vt vt it i it it it it ittt et s enenenenan
3.2 Elementary Stacksttt e e e e e e
32,1 ADSIACHON ..ottt et e e e e e e

322 Representation vttt ittt
32201 Static .. v i e e e e

3222 DYNAMIC cwviwscssomesssnmumummss s2issasssssssse

3.2.3 Encapsulation «.:ccsissswess somunicsicssicnieinses ai
3231 Stack Pt Pt vttt it i i e e e

3.2.3.2 Dynamic Representationsc.o v, .

Contents Xiii

32.4 Measurement .. :::::scsmesmemans eists6ssssvsrannas 106
3.3 Advanced Featuresttt 106
3.3.1 ADSHACHON & ittt et et e e e e e e 106
3,32 REPLESENIALION .\ ..o svavmmmenmanscsssesoeovensses s 107
3.3.2.1 StAlC svvssssssmupansmmsasms i sss ansmnsanynyas 107
3322 DYNAmMIC i s s v snnasssasensassissssssasonsng s 109

3.3.3 Encapsulationottt e e 111
33.4 MeaSUTEIMENE . .. v vttt ittt ieneee e eennonnnennns 111
34 HErators :: comun ss s s vasmmumuemesssss §aewesannssosss 114
3.4.] AbSHACHON s ¢ s s ssssmnwanmemesss i €55 NUNNSTEER EHOEE 3 114
3,42 Representation vvunivnnonn s ssnnnnesonnnns 116
3421 Static T onvn o om 10 5 o i on e e G v) o 116
3422 DYnamiC .« o.vv ittt it e e e e 118

343 Encapsulationiiiiiiii i e e 119
344 Measufement . .csonsssomews s s s Fons o sEs s ssees 119
3.5 ExplOrations s s s se s swmammmmesnmnesssamnssmssanyssssas 120
4 Queues 121
4.1 Elementary QUEUESottt ittt ittt it e it e 121
4,11 ADBSIACHON & vttt ettt it e et e ettt e e e 121
4.1:2 REDIECSENIAtION sommvmn wmmamins 6 5 5 5 5 6F 0 @660 5000065 S5 124
4.1.2,1 Static: Fust Thoughts « :::: s snpmssssnnssnwsesss 124
4.1.2.2 Static: Wraparound s s : s ssssssssmmmessammennssmiss 125
4.1.2.3 Dynamic: Two-Pointer Queues 127
4.1.2.4 Dynamic: One-Pointer Queues e 130

4.1.3 Encapsulationiiiiiiit i e 133
42 Advanced Featuresttt i 136
4.2.]1 ADSIACHON s v s wnmsmn s 6855 85 papanmmes samssssnssss 136
4.2.2 Representation «ceweccssississsmaamsmunmnssvssssiasis 137
42.2.1 Static Wraparoundot e e 137
4.2.2.2 Dynamic: One-Pointer Queues 137

4.3 TEETALOTS .« . v vt ittt e e e e e e 139
431 ADSITACHON . . vttt ittt e 139
4.3.2 REpresentation « esssw « s 553 o5 s siummme s s ososoesssssnnss 142
43.2.1 SHALEC cosapsms s s p s uaEu@ess a5 ss s ess 88853 142
4322 DYNamiC wcswwess s ssaomammessas issssssssssis 143

433 Measurement oo s o mbbimmnimms 58855685655 585 567 143

4.4 Explorations e 144

Xiv Contents

5 Lists 145
5.1 Recursive Paradigmcoiniiiiii .. 146
Sall ADSIACHOMN wnmmmme s 85 6 80 muambaaEEs§ 55 5 5 omtme o e mmm 146
5.1.2 Representationttt 150
SI20 Static ... e 150

5122 Dynamic e 151

9.1.3 EncapSulationl wuwsims s vonmsppnsnmsis sonsasinsis i nusnas 159
5.1.4 Advanced SUPPOIt i« cs s ssawusmusads s s o6 s @5 in s s bomnn 159
5:l5 TETAOIS: simsmmemim o6 5 6 & 50505 505 55 55 an v 10 n o o mtwtmrins e 21 a0 m1imr ot rom 160
5.1.6 MEasurementttt iie e e 163
5.2 Positional Paradigm e e 164
R GRVEN o3 1 ¢ ot 5 10)+ 165

5.2.2 REPrESENIAON. wiws ¢ s smsmmemusmnmsss s s 5882 as3 s 556w 6es 167

5:3 EXPIOTALIONS wssimmmmms 555 500 maBREEEES 5 5 5 55 b maboo o a0 o mmr 178
6 Trees 181
6.1 Nonlinear SIMUCIUIESttt ittt ittt e et et e e e ieeeeeenn 181
6.2 Binary Trees, Positional Paradigm 185
6.2.1 ADSITaCtioNoi ittt i e e e e e 185
0.2.2 REPIESCALION s s s s vnmuuumeansns s sasmane s s 5 @5 mmme 189
6.3 Binary Trees, Recursive Paradigm 196
6.3.1 ADbSIaCHON . . .ottt e e e 196
6.3.2 Representalionc v ivieieet i ittt 199
6.4 Tree Traversalsttt inninnie i nnennn. 204
6.4.1 Depth-first e 204
6.4.2 Breadth-firstttt iiiiiiii it 207
6.43 Other Schema it 208
6.5 Complete TIEeS . . .ottt e e 209
0:6: NAEY TICES wummu s s 1532 BUENBERERERS S 5 5 HABEEE S 5 0850 E S 3 210
6.7 Measurement AR E 5§ b S B R e e b w0 s 213
6:8 EXDIOTALIONS & simuis ¢ 2 8 25 5 5 605 558 65 858 o 0« svmmimio o s o smmioam s 215
7 Tree Applications 217
7.1 Tree ReStTUCIULING oottt et et e e e e 217
7.1.1 Binary Search Trees Revisited 217
Tdd AVLTIEES « oo s 5 v s: ummmanmmanassss s aussissnsmaiassn 221

7.1.3 B-trees

7.2 Heaps

7.2.1 Heapsort .

7.2.2 Priority Queues
7.2.3 Huffman Coding
7.3 Dictionary Trees

7.4 Explorations . .

8 Graphs

8.1 Graphs and Digraphs
8.2 Digraph Specifications
8.3 Matrix Representation
8.4 Table Representation
8.5 Dynamic Representation

8.6 Applications ..
8.7 Explorations . .

9 Sets
9.1 Specifications .

10

9.2 Static Representation
9.3 Dynamic Representation
9.4 Hashing Representation
9.5 Hamming Codes

9.6 Bags

9.7 Explorations . .

Strings

10.1 Specifications
10.1:1 SHING ‘CONSITUCIOLS. = 5 s s s w5 v5s s 066 84556060 os e85 o8
10.1.2 SHING ODSEIVELS & 6 cs s 5 5.5 55 o s v 0 o5 st bie o s oo oo mmiosilol s @
10.1.3. String EXCeplions e summeeeamenines e ommmmenios

10.2 Static Representationso v ittt ittt e
10.2.1 Ad SINES « v v v v v v veeme e s s e eae e a s s
10.2.2 TurboPascal-like Strings, ..
10.2.3 The Sentinel Method o« vvvvsvwsssssvmmevss wsnssssss s

10.3 Dynamic REPIESERIALONS < s s sswsmmmmss snmmamss oo s ssisasnss
10.3.1 SWIngs @S LISES .o v v v i v o ammimon o s smmsims os s ommmemnsones
10.3.2 Strings as Piecewise Lists

10.3.3

Tradeoffs

Contents

...
...

....................................
..

....................................
.....................................
...................................
...

...
.....................................

...

..

Xv

233
239
243
244
247
248

251
251
254
257
260
263
265
267

269
269
272
277
279
280
284
285

287
287
289
291
292
293
294
296
300
301
301
302
304

xvi Contents

10.4 String Search Algorithms i
10.4.1 The Obvious Algorithm,
1042 A Human Variationt iinininnnnnnens
10.4.3 Knuth-Morris-Pratt Algorithmc... ..
10.4.4 Boyer-Moore Algorithm,
10.4.5 COMPATISONS .« ¢ v vt i e e e e et et e et e et e et e e ee s

10.5 Tradeoffsttt i

10.6 EXDIOTations «ow scvsccnssossssssssssospsmens sssdossnmnn

11 Sorting
111 O(R2) SOMS oo et e et e e e e e e e

11.1.1 Selection SOIt ittt it et
11.1.2 Insertion (Bubble) Sort i
11.1.3 Timing Characteristics
11.2 Better Sorts

11.2.2 QuUICKSOmt .« .ottt i it e e e e
11.2.3 Timing Characteristics
11.3 O(n log n) Sorts
11.3.1 Heapsort
11:3:2 MEISESOM : s s wssnusnseuussou s e Es i b SEVSERE S8 8 §
11.3.3 Polyphase Merge
11.4 Explorations

12 Search / Update
12.1 Sequential Search e
12.2 Bisection Method Search i
12.3 Block Sequential Search/Updatecciiieiuunnnnn.
12.4 Address Calculation Search/Update
12:5 HESHIAE s ss:: smompasisnnmsmnussmae .85 5 5 baldhiedmids oo
12:6° EVAIUALION = 5 5 3 55 5050 5 56508 55 5 5 58 datm 0 5 v 5 5 s rmc ot miom vososn o o
127 EXplorationsttt ittt et e

References

Index

317
318
318
320
322
322
323
325
329
330
330
330
333
335

337
338
339
340
344
350
353
354

Preliminaries

This book presents data structure techniques in the context of object-oriented
software development with the eventual implementation of algorithms in Ada 95.
Object-oriented software development is a contemporary approach to the design
of reliable and robust software. The complexity of the implementation of
software systems is a combination of the complexity of the representations of
information and the complexity of the algorithms that manipulate the
representations. Data structures is the study of methods of representing objects,
the design of algorithms to manipulate the representations, the proper
encapsulation of objects in a reusable form, and the evaluation of the cost of the
implementation, including the measurement of the complexity of the time and
space requirements.

Programming languages play an important role in representing the solutions
to problems in an efficient, reliable, and maintainable manner. Many modern
programming languages support the layered representation of information and
algorithms, frequently referred to as abstraction. Abstraction is the separation.
or layering, of software to distinguish between what a data structure represents,
or what an algorithm accomplishes. from the implementational details of how
things are actually carried out. Abstraction is very important because frequently
there are several competing methods for representing a structure. Usually, there
are tradeoffs among competing representations and their algorithms. These

