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Preface

Our primary purpose in this volume is to establish the foundations of
equivariant stable homotopy theory. To this end, we shall construct a stable
homotopy category of G-spectra enjoying all of the good properties one might
reasonably expect, where G 1is a compact Lie group. We shall use this category to
study equivariant duality, equivariant transfer, the Burnside ring, and related

topics in equivariant homology and cohomology theory.

This volume originated as a sequel to the volume "H_ ring spectra and their
applicatfons" in this series [20]. However, our goals changed as work progressed,
and most of this volume is now wholly independent of [20]. 1In fact, we have two
essentially disjoint motives for undertaking this study. On the one hand, we are
interested in equivariant homotopy theory, the algebraic topology of spaces with
group actions, as a fascinating subject of study in its own right. On the other
hand, we are interested in equivariant homotopy theory as a tool for obtaining
useful information in classical nonequivariant homotopy theory. This division of
motivation is reflected in a division of material into two halves. The first half,
chapters I-V, is primarily addressed to the reader interested in equivariant
theory. The second half, chapters VI-X, is primarily addressed to the reader
interested in nonequivariant applications. It gives the construction and analysis
of extended powers of spectra that served as the starting point for [20]. It also
gives a systematic study of generalized Thom spectra. With a very few minor and
peripheral exceptions, the second half depends only on chapter I and the first four
sections of chapter II from the first half. The reader is referred to [105] for a

very brief guided tour of some of the high spots of the second half.

Chapter I gives the more elementary features of the equivariant stable
category, such as the theory of G-CW spectra and a desuspension theorem allowing
for desuspension of G-spectra by all representations of G in the given ambient
"indexing universe". Chapter II gives the construction of smash products and
function G-spectra. It also gives various change of universe and change of groups
theorems. Chapter III gives a reasonably comprehensive treatment of equivariant
duality theory, including Spanier-Whitehead, Atiyah, and Poincaré duality. Chapter
IV studies transfer maps associated to equivariant bundles, with emphasis on their
calculational behavior in cohomology. Chapter V studies the Burnside ring and its
role in equivariant stable homotopy theory. It includes various related splitting

theorems in equivariant homology and cohomology theory.

Although we have encountered quite a few new phenomena, our main goals in the
first half have been the equivariant generalization of known nonequivariant results
and the generalization and sharpening of known equivariant results. We therefore

owe ideas and material to numerous other mathematicians. Our general debt to the
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work of Boardman [13,14] and Adams [1] in nonequivariant stable homotopy theory will
be apparent throughout. The idea for a key proof in chapter I is due to

Hauschild. The main change of groups theorems in chapter II are generalizations of
results of Wirthmuller [144] and Adams [3], and the study of subquotient cohomology
theories in II§9 is based on ideas of Costenoble.

Our debts are particularly large in chapters III, IV, and V. Our treatment of
duality is largely based on ideas in the lovely paper [47] of Dold and Puppe and on
(nonequivariant) details in the papers [63,64,65] of their students Henn and Hommel;
equivariant duality was first studied by Wirthmuller [145]. Our treatment of
transfer naturally owes much to the basic work of Becker and Gottlieb [10,11] and
Dold [46], and transfer was first studied equivariantly by Nishida [117] and Waner
[141]. Our IV§6 is a reexposition and equivariant generalization of Feshbach's work
[53,54] on the double coset formula, and he cleared away our confusion on several
points. While our initial definitions are a bit different, a good deal of chapter V
is a reexposition in our context of tom Dieck's pioneering work [38-44] on the
Burnside ring of a compact Lie group and the splitting of equivariant stable
homotopy. This chapter also includes new proofs and generalizations of results of
Araki [4].

A word about our level of generality is in order. We don't restrict to finite
groups since, for the most part, relatively little simplification would result. We
don't generalize beyond compact Lie groups because we believe that only the most
formal and elementary portions of equivariant stable homotopy theory would then be
available. The point is that, in all of our work, the depth and interest lies in
the interplay between homotopy theory and representation theory. Technically, part
of the point is that the cohomology theories represented by our G-spectra are RO(G)-
graded and not just Z-graded. This implies huge amounts of algebraic structure

which would be invisible in more formal and less specific homotopical contexts.

While a great deal of our work concerns equivariant cohomology theory, we have
not given a systematic study here. Lewis, McClure, and I have used the equivariant
stable category to invent "ordinary RO(G)-graded cohomology theories" [88], and the
three of us and Waner are preparing a more thorough account [90]. (Hauschild,
Waner, and I are also preparing an account of equivariant infinite loop space

theory, which is less directly impinged upon by this volume.)

Chapters VI-VIII establish rigorous foundations for the earlier volume [20],
which we shall refer to as [H_ ] here. That volume presupposed extended powers
EGE = Ezj xZ'E(j) of spectra with various good properties. There E was a
nonequivariant spectrum, but our construction will apply equally well to

G-spectra E for any compact Lie group G.

In fact, extended powers result by specialization of what is probably the most

fundamental construction in equivariant stable homotopy theory, namely the twisted



half-smash product X x E of a G-space X and a G-spectrum E. (The "twisting" is
encoded by changes of universe continuously parametrized by X.) This construction
is presented in chapter VI, although various special cases will have been

encountered earlier.

We develop a theory of "operad ring G-spectra" and in particular construct free
operad ring G-spectra in chapter VII. When G is finite, special cases give
approximations of iterated loop G-spaces QVZVX, and we obtain equivariant

generalizations of Snaith's stable splittings of spaces X

We prove some homological properties of nonequivariant extended powers that

were used in [H_] in chapter VIII.

Chapters IX and X give a careful treatment of the Thom spectra associated to
maps into stable classifying spaces. These have been used extensively in recent
years, and many people have felt a need for a detailed foundational study. In
chapter IX, we work nonequivariantly and concentrate on technical problems arising
in the context of spherical fibrations (as opposed to vector bundles). In chapter
X, we work equivariantly but restrict ourselves to the context of G-vector bundles.
There result two specializations to the context of nonequivariant vector bundles,
the second of which is the more useful since it deals naturally with elements of

KO(X) of arbitrary virtual dimension.

We must again acknowledge our debts to other mathematicians. We owe various
details to Bruner, Elmendorf, and McClure. The paper of Tsuchiya [138] gave an
early first approximation of our definitions of extended powers and H_~ ring
spectra. As explained at the end of VIIS2, Robinson's A_ ring spectra [124] fit
naturally into our context. The proof of the splitting theorem in VII§5 is that
taught us by Ralph Cohen [34]. We owe the formulations of some of our results on
Thom spectra to Boardman [12] and of others to Mahowald [93], whose work led to our
detailed study of these objects.

Each chapter of this book has an introduction summarizing its main ideas and
results. There is a preamble comparing our approach to the nonequivariant stable
category with earlier ones, and there is an appendix giving some of the more
esoteric proofs. References are generally by name (Lemma 5.4) when to results in

the same chapter and by number (II.5.4) when to results in other chapters.

Finally, I should say a word about the genesis and authorship of this volume.
Chapter VIII and part of chapter VI are based on Steinberger's thesis [133], and
chapter VII started from unpublished 1978 notes of his. Chapter IX and the
Appendix are based on Lewis' thesis [83], and the definition and axiomatization of
the transfer in chapter IV are simplifications of his work in [85]. Chapter V
incorporates material from unpublished 1980 notes of McClure. All of the rest of

the equivariant material is later joint work of Lewis and myself.
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The authorship of the several chapters is as follows.
Chapters I through IV: Lewis and May
Chapter V: Iewis, May, and McClure
Chapters VI and VII: Lewis, May, and Steinberger
Chapter VIII: May and Steinberger
Chapter IX: Lewis

Chapter X: Lewis and May

The Appendix and the indices were prepared by Lewis.

J. Peter May
June 20, 1985

A1l authors acknowledge partial support from the National Science Foundation.
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Preamble: A polemical introduction to the stable category

by J. P. May

Nonequivariantly, the virtues of having a good stable category are by now well
understood. In such a category, the basic formal properties of homology and
cohomology theories become trivialities. Many arguments that could be carried out
ad hoc without a stable category became much cleaner with one. More important, many

common arguments simply cannot be made rigorous without use of such a category.

Equivariantly, it is even more important to have a good stable category. Much
basic equivariant algebra only arises in a fully stable context. For example, one
already has that [S",S"] 4is Z for n » 1 and that [SP,X] is a Z-module for
n > 2. The equivariant analog of Z 1is the Burnside ring A(G), and, unless G is
finite, there need be no representation V of G large enough that [SV,SV]G is
A(G) or that [SV,X]G is an A(G)-module. Even when G is finite, and regardless
of connectivity hypotheses, none of the ordinary homotopy groups [Sn,X]G of a
G-space X mneed be A(G)-modules, whereas all of the homotopy groups of G-spectra

are A(G)-modules. Much more evidence will appear as we proceed.

Our construction of the equivariant stable category is a generalization of my
construction of the nonequivariant stable category. Since the latter is less
familiar than the earlier constructions of Boardman and Adams, a comparison of the
various approaches may be helpful to the informed reader. I can't resist quoting
from Boardman's 1969 Historical Introduction [13, p.l]. "This introduction... is
addressed without compromise to the experts. (The novice has the advantage of not

having been misled by previous theories.)"

Boardman continues "In this advertisement we compare our category S of CW-

spectra, or rather its homotopy category S,, with various competing products. We
find the comparison quite conclusive, because the more good properties the
competitors have, the closer they are to Sp". All experts now accept this
absolutely. Boardman's category S is definitively the right one, and any good
stable category must be equivalent to it. It does not follow, however, that his
category S, before passage to homotopy, is the right one, and we are convinced
that it is not.

Boardman's construction of his category S proceeds as follows. He begins
with the category F of finite CW complexes. He constructs the category SS of
finite CW spectra by a purely categorical procedure of stabilization with respect
to the suspension functor. He then constructs S from SS by a much deeper purely
categorical procedure of adjoining colimits of all directed diagrams of finite CW
spectra and inclusions. The intuition is that, however CW spectra are defined,

they ought to be the colimits of their finite subspectra, and finite CW spectra



ought to be desuspensions of finite CW complexes. An advantage of this approach
is that one can obtain conceptual proofs of theorems about §h almost automatically
by feeding information about finite CW complexes into a categorical black box. A
disadvantage, to paraphrase Adams [1, p.123], is that the construction is

inaccessible to those without a specialized knowledge of category theory.

In fact, in his Historical Introduction [13, p.4], Boardman pointed out an
alternative description of a category equivalent to his, and he gave details of the
comparison in [14,§10]. Define a CW prespectrum D to be a sequence of CW

complexes ql and cellular inclusions ZDn > Define a map f: D » D' to be a

n+l°
family of based maps fn: Dy » E% strictly compatible with the given inclusions.
Let ®(D,D') denote the set of maps D » D'. Say that a subprespectrum C is
dense (or cofinal) in D if for any finite subcomplex X of Dy, ZkX is contained
in Cn+k for some k. Then [14,10.3] implies that S 1is equivalent to the

category of CW-prespectra D and morphisms

S(D,D') = I | P(c,c') /(=) = _l_]_ﬂc,D')/(=),
(c,c') C
where C and C' run through the dense subprespectra of D and D' and where

f: C » C' is equivalent to f: C » 6' if and only if the composites
cnt-fec'c D anda cnt-LisT cp

are equal.

Adams [1] turned this result into a definition and proceeded from there. (He
called a map D » D' a "function", an element of S(D,D') a "map", and a homotopy
class of "maps" a "morphism"; he also called a CW prespectrum a CW spectrum.) A
similarly explicit starting point was taken by Puppe [122]. An advantage of this
approach (to some people!) is that it is blessedly free of category theory. A
disadvantage is that many proofs, for example in the theory of smash products,
become unpleasantly ad hoc. To quote Boardman again [14,p.52], "The complication

will show why we do not adopt this as definition".

It seems reasonable to seek an alternative construction with all of the
advantages and none of the disadvantages. Staring at the definition, we see that
S 1is constructed from the category of CW prespectra and maps by applying a kind
of limit procedure to morphisms while leaving the objects strictly alone. This is

the meaning of Adams' slogan [1, p.142] "cells now - maps later".

From our point of view, this is precisely analogous to developing sheaf theory
without ever introducing sheaves or sheafification. There is a perfectly sensible
way to "spectrify" so as to force elements of S(D,D') to be on the same concrete

level as maps D » D'. Define a spectrum E +to be a sequence of based spaces E,



and based homeomorphisms E, » QF - Define a map f: E » E' to be a sequence of
based maps f,: E; » E} strictly compatible with the homeomorphisms. Let

4(E,E') denote the set of maps E » E'. Define the spectrum LD associated to a
CW prespectrum D by

; k
(LD)__ = colim @D ,
no 50 n+k

where the colimit is taken with respect to iterated loops on adjoint inclusions

Di +> QDi+1.

Q(LD) = (LD),,» One finds by a laborious inspection of definitions that

Since Q@ commutes with colimits, there are evident homeomorphisms

n+l

S(D,D') = A(LD,LD').

Of course, only the expert seeking concordance with earlier definitions need worry

about the verification: we shall take the category 4 as our starting point.

Obviously the spaces (LD), are no longer CW complexes (although they do
have the homotopy types of CW complexes), and we have imposed no CW requirement
in our definition of spectra. It should now be apparent that, despite their rigid
structure, spectra are considerably more general objects than CW prespectra.
Working in a stable world in which the only spectra are those coming from CW
prespectra is precisely analogous to working in an unstable world in which the only
spaces are the CW complexes. Just as any space has the weak homotopy type of a
CW complex, so any spectrum has the weak homotopy type of one coming from a CW
prespectrum. (Verification of the last assertion requires only elementary
constructions with space level CW approximations and mapping cylinders and was

already implicit in my 1969 paper [95].)

The extra generality allowed by our definition of spectra is vital to our

theory. Throughout this volume, we shall be making concrete spectrum-level

constructions which simply don't exist in the world of CW prespectra.

Dropping CW conditions in our definition of spectra clearly entails
dropping CW conditions in our definition of prespectra. For us, a prespectrum is
a sequence of spaces Dn and maps an > Dn+1'
above. By our analogy with sheaf theory, we are morally bound to extend the

Maps of prespectra are defined as

construction L above to a spectrification functor L: ®+ £ left adjoint to the
obvious forgetful functor from spectra to prespectra. When the adjoints

Dy » 8Dy
due to Lewis [83], who will give details in the Appendix. Starting from D one

are not inclusions, LD is slightly mysterious and its construction is

constructs a prespectrum D' and map D » D' by letting D{ be the image of Dy

in @D;,,. The resulting maps D} » @Dj,;

Iterating this construction (transfinitely many times!) one arrives at a

are a bit closer to being inclusions.



prespectrum D and map D ~» B such that the maps D; - Qbi+l are inclusions. One
defines LD by applying the elementary colimit construction above to B; one has a
composite natural map D » LD which is the unit of the adjunction. Actually, the
explicit construction is of little importance. The essential point is that, by
standard and elementary category theory, L obviously exists and is obviously

unique.

We now see that our category of spectra has arbitrary limits and colimits.
Indeed, the category of prespectra obviously has all limits and colimits since these
can be constructed spacewise. All such 1limit constructions preserve spectra.
Colimit constructions do not, and colimits of spectra are obtained by applying L
to prespectrum level colimits. Thus, and this will take some getting used to by the
experts, limits for us are simpler constructions than colimits. In fact, right
adjoints in general are simpler constructions than left adjoints. For example, it
is trivial for us to write down explicit products and pullbacks of spectra and

explicit function spectra. These don't exist in the world of CW-prespectra.

Moreover, we shall often prove non-obvious facts about left adjoints simply by
quoting obvious facts about right adjoints. This might seem altogether too
categorical, but in fact the opposite procedure has long been standard practice.
Function spectra in §h (not S!) are usually obtained by quoting Brown's
representability theorem - something at least as sophisticated as any category
theory we use - and then proving things about these right adjoints by quoting known

facts about the left adjoint smash product functors.

Of course, one does want a theory of CW spectra, but there is no longer the
slightest reason to retreat to the space or prespectrum level to develop it. We have
a good category of spectra, with cones, pushouts, and colimits. To define CW
spectra, we need only define sphere spectra and proceed exactly as on the space
level, using spectrum level attaching maps. The resulting CW spectra are all
homotopy equivalent to spectra coming from CW prespectra; conversely, any spectrum
coming from a CW-prespectrum is homotopy equivalent to a CW-spectrum. A CW-spectrum
is the colimit of its finite subspectra, and a finite CW spectrum is a
desuspension of a finite CW complex (that is, of its associated suspension
spectrum). Our stable category is constructed from the homotopy category of spectra
by adjoining formal inverses to the weak equivalences. It is equivalent to the
homotopy category of CW spectra. By the discussion above, it is also equivalent
to Boardman's category S;. Without exception, everything in the literature done in
Boardman's category can just as well be interpreted as having been done in our

category.

In one respect I have lied a bit above. We don't usually index prespectra and
spectra on integers but rather on finite dimensional inner product spaces. When one

thinks of Dn’ one thinks of S® and thus of R". Implicitly, one is thinking



of R*® with its standard basis. Even nonequivariantly, a coordinate free approach
has considerable advantages. For example, it leads to an extremely simple
conceptual treatment of smash products and, as Quinn, Ray, and I realized in 1973
[99], it is vital to the theory of structured ring spectra. In the equivariant
context, one must deal with all representations, and coordinate-free indexing is

obviously called for, as tom Dieck realized even earlier.

Modulo the appropriate indexing, virtually everything said above about my
approach to the nonequivariant stable category applies verbatim in the equivariant
context. The few exceptions are relevant to possible generalizations of the earlier
constructions. Our G-CW spectra are built up from "G-sphere spectra" G/H' A Sn,
and any G-CW spectrum is the colimit of its finite subspectra. However, it is not
true that a finite G-CW spectrum is isomorphic (as opposed to homotopy equivalent)
to a desuspension of a finite G-CW complex unless one redefines the latter by
allowing G-spheres G/H'A SV associated to G-representations V as domains of
attaching maps. This loses the cellular approximation theorem and would presumably
cause difficulties in a Boardman style approach to the G-stable category. Since
G-spheres SV are not known to have canonical G-CW structures, the appropriate
notion of a G-CW prespectrum is not immediately apparent. We shall give a
definition which is related to our notions exactly as described above in the
nonequivariant case. However, a full treatment, including smash and twisted half-
smash products, would be inordinately lengthy and complicated. In any case, right
adjoints, such as fixed point functors, are even more important equivariantly than
nonequivariantly, and a treatment lacking such constructions on the spectrum level

would be most unnatural.

I should say that there is also a semisimplicial construction of the stable
category due to Kan (and Whitehead) [69,70] and elaborated by Burghelea and Deleanu
[21]. Except perhaps when G is finite, it is ill-adapted to equivariant
generalization, and it is also inconvenient for the study of structured ring

spectra.

One last point addressed to the experts. We shall not introduce graded
morphisms here. Regardless of what approach one takes, graded morphisms are really
nothing more than a notational device. The device can aid in keeping track of the
signs which arise in the study of cohomology theories, but it can in principle add
nothing substantive to the mathematics. In the equivariant context, the grading
would have to be over RO(G) and its introduction would serve only to obscure the

exposition.



I. THE EQUIVARIANT STABLE CATEGORY

by L. G. Lewis, Jr. and J. P. May

We gave a preliminary definition of spectra in [H_,I81] as sequences of spaces
Ei and homeomorphisms E; = QE;.q This "coordinatized" notion is wholly inadequate
for the study of either structured ring spectra or equivariant stable homotopy
theory. While our main concern in [H_] was with the first of these subjects, we are
here most interested in the second. Because of the role played by permutation
groups in the construction of extended powers, we need a fair amount of equivariant
stable homotopy theory to make rigorous the constructions used in [H_] in any
case. While this motivates us only as far as the study of G-spectra for finite
groups G, it turns out that a complete treatment of the foundations of equivariant
stable homotopy theory in the proper generality of compact Lie groups is obtainable

with very little extra effort.

Thus, throughout the first five chapters, G will be a compact Lie group.
Considerations special to permutation groups will not appear until late in Chapter
VI. We shall construct a good "stable category" of G-spectra, where "stability" is
to be interpreted as allowing for desuspensions by arbitrary finite dimensional real

representations of G.

After some recollections about equivariant homotopy theory in section 1, we
begin work in section 2 by setting up categories of G-prespectra and G-spectra and
discussing various adjoint functors relating them to each other and to G-spaces. We
give both coordinate-free and coordinatized notions of G-spectra and show that these
give rise to equivalent categories. The freedom to pass back and forth between the

two is vital to the theory.

In section 3, we introduce the smash products of G-spaces and G-spectra and the
associated adjoint function G-spectra. The analogous constructions between G-spectra
and G-spectra are deeper and will be presented in the next chapter. The simpler
constructions suffice for development of most of the basic machinery of homotopy
theory. We also introduce orbit spectra and fixed point spectra.

In section 4, we introduce left adjoints "AZZ“" to the 2zW space functors

from G-spectra to G-spaces, where Z runs through the relevant indexing
representations. These functors play a basic role in the passage back and forth
between space level and spectrum level information. In particular, we use instances
of these functors to define sphere G-spectra Sﬁ = G/H'AS" for integers n and
closed subgroups H of G. (The term subgroup shall mean closed subgroup
henceforward.) We then define homotopy groups in terms of these sphere spectra and

define weak equivalences in terms of the resulting homotopy groups.



In section 5, we introduce G-CW spectra. We follow a general approach,
developed in more detail in [107], in which such basic results as the cellular
approximation theorem, Whitehead's theorem, and the Brown representability theorem
are almost formal trivialities. With these results, we see that arbitrary G-spectra
are weakly equivalent to G-CW spectra. This allows us to construct the equivariant
stable category by formally inverting the weak equivalences in the homotopy category
of G-spectra. The result is equivalent to the homotopy category of G-CW spectra,
both points of view being essential to a fully satisfactory theory.

In section 6, we summarize the basic properties of the stable category, the
most important being the equivariant desuspension theorem. This asserts that Q' and
Zv are adjoint self equivalences of the stable category for any G-representation
V. We then indicate briefly how to define represented equivariant cohomology
theories. The natural representing objects for cohomology theories on G-spaces are
cruder than our G-spectra, and we make use of an elementary iterated mapping
cylinder construction on the G-prespectrum level to obtain a precise comparison.
This cylinder construction has various other applications. On the G-spectrum level,
it turns out to admit a simple description as a telescope, and this leads to a lim1
exact sequence for the calculation of the cohomology of G-spectra in terms of the
cohomologies of their component G-spaces.

In section 7, we give a number of deferred proofs based on use of a shift
desuspension functor AZ (in terms of which the earlier functor Azzm is a
composite). In particular, we prove the equivariant desuspension theorem. This
depends on the assertion that a map of G-spectra is a weak equivalence if and only
if each of its component maps of G-spaces is a weak equivalence. This is the only
place in the chapter where equivariance plays a really major role in a proof, the
corresponding nonequivariant assertion being utterly trivial. We learned the basic
line of argument from Henning Hauschild, although the full strength of the result

depends on our definitional framework.

In section 8, we give various results concerning special kinds of G-prespectra
and G-spectra. In particular, we show that, up to homotopy, our G-CW spectra come

from G-CW prespectra of a suitably naive sort.

We shall defer some details of proof to the Appendix, on the grounds that the

arguments in question would unduly interrupt the exposition.

We remind the reader that G is always a compact Lie group and that everything
in sight is G-equivariant. Once the definitions are in place, we generally omit the

G from the notations, writing spectra for G-spectra, etc.



§1. Recollections about equivariant homotopy theory

Since the basic definitions of equivariant homotopy theory are not as widely

known as they ought to be, we give a brief summary before turning to G-spectra.

Let GU denote the category of compactly generated weak Hausdorff left
G-spaces. (The weak Hausdorff condition asserts that the diagonal is closed in the
compactly generated product; it is the most natural separation axiom to adopt for
compactly generated spaces; see [111,83].) Let GJ denote the category of based
left G-spaces, with G acting trivially on basepoints. These categories are closed
under such standard constructions as (compactly generated) products and function
spaces, G acting diagonally on products and by conjugation on function spaces. The
usual adjunction homeomorphisms hold and are G-equivariant. For unbased G-spaces

X,Y, and Z we have

gk * ¥ 5 (g%,

We write F(X,Y) for the function space of based maps X » Y; for based G-spaces X,Y,

and Z we have

F(XAY,Z) = F(X,F(Y,2)).

The usual machinery of homotopy theory is available in the categories GW and
GJ , homotopies being maps X x I »Y in GW or XAI' » Y in GJ . Cofibrations are
defined in either category by the homotopy extension property (and are automatically
closed inclusions). Similarly, fibrations are defined by the covering homotopy
property. We shall use standard results without further comment; see e.g. [17,143,
or 107]. Write hGW and hGJ for the respective homotopy categories and write
n(X,Y)G for the set of homotopy classes of based maps X » Y.

Turning to homotopy groups, let S™ = I/3I" with trivial G-action and with
sO = {0,1}. For Hc G, define a G-space Sfj by

s = (a/H) A s™ = (G/H) x S®/(G/H) x (*}.

We think of Sﬁ as a generalized sphere. It is well understood that the homotopy
groups of a based G-space X should be taken to be the collection of homotopy groups

He _ H _ n - n
'nnX = wnX = (S ’X)H = 'n(SH,X)G .

Here the last isomorphism comes from the adjunction



