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LASER APPLICATIONS IN CHEMISTRY

Volume 669
INTRODUCTION

For this conference, papers were sought that reported investigations of chemical
systems that could not be done or would have been much less informative without
the use of a laser. The conference papers did show that lasers are a powerful tool
for the investigation of chemical dynamics and kinetics. International interest in
laser applications was indicated by the fact that research results from eight
countries were discussed. These were divided into three groups, which were
presented in these four sessiqns: (1) Isotope Separation and Related Photo-
chemistry, (2) and (4) Laser Induced Chemistry, and (3) Laser Spectroscopy. The
first session centered on the presentations on infrared laser induced isotope
separation (669-01) and isotope separation of an atomic vapor based on multi-
photon ipnization (669-06). Other papers covered the range of theoretical investi-
gations of energy transfer (669-10) to optimizing an application of laser chemistry
for recovery of tritium (669-03). The collection of papers in this session provide a
good overview of the state of development of applications of lasers to the problem
of enriching the isotopes of many elements.

Two sessions on laser induced chemistry could only indicate the range of possibil-
ities. Invited talks covered use of lasers to probe reactive systems (669-11, -16,
-27, -31) while other discussion ranged from preparation of well-defined high
pressure systems (669-12) through low temperature chain reaction initiation
(669-13) to deposition..on substrates (669-28). included in this session was a
theoretical analysis of multiphoton transitions, which concluded that intensity
dependence measurements may not reflect the photon order of processes (669-30).

The session on laser spectroscopy was an impressive collection of techniques for
investigating surfaces (669-22) and the evolution of a collection of molecules as
they change from individuals to a bulk ensemble by studying clusters in a molec-
ular beam (669-21, -24, -25). Papers on measurements of inverted systems
(669-23) and the fundamental shape of transitions in large molecules (669-26)
completed this session.

The most interesting overall aspect of this conference was the breadth of applica-
tions of lasers. A short meeting such as this can indicate how much may be
possible in understanding and controlling cherhical processes by using lasers. |
look forward to further advances as new lasers and new techniques are developed.

D. Keith Evans
Atomic Energy of Canada Limited, Canada
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Invited Paper

selective Multiphoton Decomposition Studies Relating to the
Separation of Hydrogen Isotopes*

Robert D, McAlpine, L.K. kvans and Michael Ivanco

Atomic Energy of Canada Limited, Research Company
Chalk River Nuclear Laboratories
rhysical Chemistry Branch
Chalk River, untario, Canada, KO0J 1luU

Abstract

Three markets exist for processes capable ot separating hydroyen isotopes:
(1) separation ot b from H, (2) separation of T trom D, and, (3) separation of T from H.
The selective Multiphoton’' Decomposition (MPL) process has been proposed for each of these
markets and a search has gone on, in several countries, for the suitable working molecule
for each of these separations. 1n this paper the incentives for the separation of hydro-

gen isotopes are listed, the MPD process is outlined, and the search tor suitable workiny
molecules is reviewed.

Introduction

The use of lasers for isotope separations has been researchea in many countries since
about 1970, This work has generated much interest in the large scale inaustrial applic-
ations of lasers that would follow the successful construction of a plant at the scale of
a laser-based uranium enrichment facility. To many, this project is seen as the important
first step that will make possible other larye scale chemical applications usiny lasers.
Similarly, there is also the belief that the development of lasers for the U.S. Strategic

Defence Initiative will help to provide industrial lasers for use in non-military applic-
ations.

The current production capacity for enriched uranium fuel for pressurized light water
reactors of about 39 to 45 SWU/year is in excess of the market of 22 to 25 SWU/year.
Houfver, the excess capacity is expected to decline to a deficit by the turn of the cent-
ury The Atomic Vapor Laser Isotope Separation (AVLIS) program at the Lawrence Livermore
National Laboratory in Calitornia is projecting enrichment costs sufficiently low that
AVLIS proponents hope to capture much of the uranium enrichment market.

The other large scale market for isotopic enrichment is enrichment of the isotopes ot
hydrogen. This market includes:

(a) Separation of deuterium (D) from protium (H) (D/H)

D occurs as a natural stable isotope in hydrogen at a concentration of about 150 ppm, and
is enriched to >99.8% D in the form of heavy water for use as a moderator and a coolant
in CANDU reactors. As with the uranium enrichment market, heavy water production is
currently in a surplus position at a production rate ot about 1000 Mg/year.

{D) Recovery ot tritium (T) from deuterium (1/D)

4 is rormed by neutron ca,ture in the moderator and coolant ot heavy water reactors. It
would build up to a maximum (steady state) value of about 21 ppm; but, because of invent-
ory replacement and for safety reasons, levels have never reached this value. Trecovery
both reduces radiation hazard to station personnel and provides a valuable commodity for
fusion studigs and, eventually, for fusion power plants.

(c) Recovery of tritium from protium (T/H)
In the reprocessing of reactor fuels, T in Hy0 is encountered at levels of about 0.07 ppm.
Recovery of this T is desirable for environmental reasons.

éélssuod as AECL contribution number 9207

CANDU is a registered trade mark of Atomic Energy of Canada Limited
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Laser Isotope Separation (LIS) has been demonstrated for 1sotopes such as those ot
carbon, and sulphur. However, the existing market for the production of isotopes of ele-
ments other than uranium or hydrogen has not been sutticiently large to justity the cons-
truction of laser based production tacilities.

Conventional Hydroyen Isotope Separation Processes

Chemical Exchanye Processes

Most of the world's heavy water 1s produced by the GS bithermal chemical exchange pro-
cess between hydrogen sulphide and water. The GS process extracts only about 18% ot the
deuterium 1in the teed water, meaning that about 1.6 x 1U° litres/hour ot water must be
processed tor a 4UU Myg/year heavy water plant. A process recovering a greater traction ot
the feed water deuterium will probably have a lower eneryy cost than the GS process.
Bithermal chemical exchange between other molecular pairs have higher recoveries but are
limited in s1ze. Nonetheless successtul plants using HD/liquid NH3 have operated in
rrance and India and a pilot study has been completed with the HL/aminomethane system.
Both processes have relatively low eneryy demands but require catalysts. Since both need
a larye source ot hydroyen, they are currently parasitic to another industrial process and
limited 1n proauction capability.

Another potential chemical exchanye process using a water feed is the Hy/HDO exchange
process. This process recovers more (4:.% theoretically) of the deuterium trom the liquid
teed than the G5 process and the eneryy costs for a comparable size plant are also lower.
Characteristics of the four chemical exchange processes are summarized in Table 1.

Table 1: Characteristics ot rour bithermal Exchanye Processes which can be used for
the Comwercial Production of Heavy water.

HDO/Ho S HDO/Hp | HUL/NH3 HD/CH3NH

% ot Feed D Recovered (Theory) 22 42 50 55

Energy (Gdg¢/ky "of Dy 0) (a) 3u Y 7 1t

Catalyst Reyuireaq NO Yes Yes Yes

beuterium source Hp O Hy U or Hy H,
Hz

(a) expressed in terms ot thermal energy equivalent

Other separation processes

Another process coupled with the demand for the production of hydroygen, is the com-
binea electrolysis catalytie exchange process (CECE). Under conditions where hydrogen
ygyenerat.on costs are low, the CECE process is the most economically attractive process for
heavy water production.

Cryogenic distillation of molecular hydrogen is favoured as the basis of plants for
recovery of tritium within Canada, France and the United States. Catalyzed isotopic
exchange between hydroyen and water is used in the first staye to transfer tritium to the
teed stream of the cryogenic unit. This can be done effectively with platinum catalysts
in the vapour phase or, as will soon be demonstrated at CRNL, with catalysts designed to
function in the presence of liquid water. For tritium recovery ener,, costs are less
important than for DU processes; since the guantity of material to be processed is very
much smaller.

SPIE Vol. 669 Laser Applications in Chemistry (1986)/ 3
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Schematic diagrams of three laser based enrichment schemes which have been
considered for separation of hydrogen isotopes. These processes are
briefly discussed in the text,

Figure 1:

Lagser Isotope Separation Processes

Process descriptions

Several LIS processes, illustrated in Figure 1, have been considered for hydrogen iso-
topes. There is an important advantage tor a process that will work directly on either
water or natural gas (the only deuterium containing molecules fugficiently abundant to be
the primary teed for a heavy water process). OUne early scheme® s’ using water was the
selective two-step dissociation process. The tirst intrared (IR) laser was tuned to an
absorption ot the HLDU molecule, ftrequency shittea from H,U absorptions. A second ultra-
violet (UV) laser was tuned to dgecompose only the vibrationally excited nbDU molecules.
This scheme was unsuccessful tor two reasons: (1) the onset ot the UV photodissociation of
water has an ill-defined threshold. This results in very poor selectivity tor the combin-
ation of IR and UV lasers unless the IR laser is tuned to a very high overtone of the -OD
stretch mode. The low extinction coefficients for these overtones, compared to the funda-
mental, makes the etficient use of IR photons difficult; (2) the dissociation of water
produces H and OH radicals which will rapidly isotopically equilibrate with the undissoc-
iated water unless they are etticiently scavenged. This scavenging is ditficult.

A second early su::_;gest;ion"'s for hydrogen LIS was the laser induced selective predis-
sociation of a D or T containing molecule, Since neither water nor methane undergo pre-=
dissociation, it was necessary to use a workinyg molecule (e.g., formaldehyde) which could
be redeuterated by exchange with water or methane. Although high selectivities were dem-
onstrated usin, torialuehyue, its exchange with water required a catai,st, and tormal-
dehyde decomposed on catalytic surfaces used for exchange. It also polymerised spontane-
ously at pressures apove about LU-¢U ‘forr. In addition, the well resolved tunable lasers

which were required for high selectivities were of quite low electrical to photon conver-
sion efficiencies.

Following the discovery9 of the multiphoton d?somposition (MPD) process and further,
that this process could be isotopically selective' , the search began for suitable working
molecules for hydrogen isotope LIS. It soon became evident that water and methane are
unsuitable for efficient MPD since their relatively small number of atoms give rise to a

4 7 SPIE Vol. 669 Laser Applicetions in Chemistry (1986)



bottle-neck for MPDll. Consequently, the search widened to find suitable working mole-
cules for LIS of hydrogen isotopes. Some important criteria for a suitable workiny
molecule are: .

(1) optical Selectivity: The ratio of absorption by the molecules containing the
desired, to those containing the undesired isotope S{¢), for fluence ¢, should be suffici-
ently large to prevent: (a) loss of photons through absorption by the undesired species;
(b) loss of isotopic enrichment through decomposition of working molecules containing the
undesired species; (c) makeup costs for replacinyg workinyg molecules containing the

undesired species that are gecomposed. This criterion is discussed in a seminal paper by
Marling, Herman and Thomasl .

(2) Chemical- Exchange: The rate of exchange between the working molecule and H,0 or
CHy , equation (1l): .

AH + |HDO |=AD + lH,0 (1)
CDHj3 CHy

determines the size of the contacting towers. 1In fact, the exchanye step is similar
to the chemical exchange step in the bithermal process and the energy and capital costs ot

the LIS process are sensitive to the exchange step. It is important that losses of the
working molecule be minimal.

(3) MPD versus Fluence: To minimize laser-induced materials damage and for efficient
use of photons, the working molecule should ideally decompose at ¢<4 J/cm‘.

(4) MPD Products: The prodhcts containing the desired isotope should be stable or
easily scavenged to prevent loss. ot selectivity and the desired isotope should appear in
as tew products as possible to minimize purification and ease product recovery.

(5) sSeparation ractors: The heads separation factor, 8, (the ratio ot heads to teed
isotopic ratios), or the tails separatipn. factor, v, (the ratio of feed to tails isotopic
ratios) depend on the application and should be sufficiently large. For example, for b/H,
8 should be >1600; for T/D, Yy should be >3, Several methods (Table Z) have been used to
measure directly or to infer relevant photochemical separation factors. Very few studies
ot overall process separation factors have been reported.

(6) Non-linear Uptical Properties: At high laser intensities, such non-linear
effects as self-focusing can occur. These must be allowed tor in the desiyn of photolysis
cells.,

(7) outher Properties: Other properties such as toxicity, volatility, solubility,
stability, cost and others may also be important considerations.

Current research on H isotopes LIS is centered on the search tor suitable working
molecules fulfillinyg the criteria above. A list of molecules which have been considered,
and the relevant chemical and photochemical properties of each is given in Table 3. For
many of these molecules, there are still siygnificant gaps in knowledge. Since the early
1980's, fluoroform has been the molecule most fitting the criteria for a working molecule
for D/B and T/H separation. However, fluoroform is deficienfzin criteria 2 and 3, leading
to heavy water costs probably comparable to the G.S. process'“, Chloroform exchanges with
water more rapidly than fluoroform; however it requires MPD fluences only slightly lower
than fluoroform. The alcohols undergo virtually instantaneous excgange with water; but
they require very large fluences for MPD. Recent studies in China show dichlorofluoro-
methane to we an 1nteresting potential workiny molecule for D/H separation. Wwork in Japan
and elsewhere on large molecules, which should unueryu wrv at iow Iluences, show that
i~heptafluoropentane may be suitable for T/H separation. The search for suitable working
molecules continues, and the potential for practical LIS schemes for hydrogen isotope
separation is good.

" In addition to the search for new potential working molecules, more detailed under-
standing of the MPD process is revealing new ways to improve both the efficiency and the
selectivity of MPD for molecules already studied. Some of these new techniques include
the creative use of collisions, using multiple laser sources tuned to pumplgifferent reg-
ions of the excitation ladder, and the use of electric and magnetic fields ~. While the

SPIE Vol. 669 Laser Applications in Chemistry (1986)/ 8



ideal conditions for hydrogen isotope LIS are still not known, progress in this area, as
in the search for ideal working molecules, is still being made.

Table 2: Convention for the classitication ot measured enrichment tactors according
to the experimental technigues employed.

-

I Photolysis ot actual isotopic.mixtures.
II Photolysis of the individual isotopic species.

A. Determination of enrichment factors trom actually separated or easily separable stable
products.

B. Determination of enrichment factors from a transient intermediate which may later
exchange or further react. ’

C. VULetermination of enrichment factors trom unreacted initial molecules following
photolysis without physical separation of products.

D. Interence of enrichment factors from an analysis of products not containing the
desired isotope.

Table 3: T/D and T/H Separation by the Selective MPDL Process. Note ¥ge tollowing
??breviations are used: Cl2 and Cl3 respectively denote a C0z and a
Cu, Laser; NL denotes an ammonia laser. The numbers for the properties
discussed are as follows: 1. Optical Selectivity. 2. Chemical Exchange.
3. MPDL versus Fluence, f(¢). 4. MPD products. Y. Separation Factors. 6. Non-
Linear Optical Properties and 7. Uther Properties. beparation factors are
described by the experimental categories IA to IID as defined in Table 2.

Comments References
A. Molecules Containing an -OH Group

l. Formic Acid (HCOOH) )
1. D/H: S(¢) high for Dk laser, T/bL, T/H not studied (14,15)
2. Very rapid with water, slow with methane
3. MPD requires high ¢ or collisions, small molecule behaviour (15)
4., Two channels: HpVU + CU and Hy + COy 1 (14,15)
5., By=25 (1A) tor HCUOUH/HCLLL=5U% and P=0.6 krPa. By varies as P~ (15)

7. Corrosive, decomposes, miscible with water, dimer tormation in vapour phase (16)

2. Methanol (CH3OUH)

l. D/H: S(¢) high tor LF laser, T/D, T/H not studied (14,15)
2. 'Very rapid with water, slow with methane

3. Collisionless MPL: HF, f(¢)=exp(-3500/¢); Cl2, t(¢)=exp(-150/¢).

Collisions assist MPD. (17-21)
4. Primary Products: CH3z, OH, Hp: Ubserved Products: CO, CH,, CzHg, CoHy,

CoHz, H20, CHp ¢ L (17-25) -
5. By= 25 (IA) for CH3OH/CH3zUD=50% at P=0,27 kPa, varies as P~ (17)

7. Easily handled, slightly toxic, miscible with water -

3. Ethanol (C,HsOH)

1,2,7 Similar to methanol (26)
3. f(¢)=exp(-8/¢) P=1.0 kPa, COp laser, pulse width 10 ns 127)
4 Observed products: Hy, CH3CHO, CyH,, HyO, CH,, CyHg

B. Halomethanes
1, Fluoroform (CHF3)

1. D/H: S(25)=900, with Cl2 10R(26), higher with 1UR( _ */H: S{¢), high with
Cl2 9R(14). T/D: S(¢) high with Cl1l2 ' (12,37)
2, H0 requireg catalyst, D enrichment in fluoroform (38)

3. f(¢)=(¢/27)°, ¢#<27, natural abundance (12)
4, Primary Products: HF, CF; N
5. D/H: 2000<g<20,000, (IA, IB, IC, ID) collisions increase 8. T/H:8>10

with buffer gas, 8 increases at low temperatures, D can be removed
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from a T/D/H mixture with C12 10R(12) line. Two-colour MPD studied.
self-focussing or defocussing depending on wavelength

Non—toxic,.make-up<12 kg CHF3/kg D20, stable, easily handled; Pumping plus
recompression costs estimated higher than GS process tor single laser MPD

Chloroform (CHCl3)

T/D: $(U)=6500 to 12000, NL, S(15)>500. D/H: S(¢) obtained with C13, Cl2
For H;0 requires catalyst, faster than CHF3; not known for CH,
f(¢)=2.8exp(-13.4/¢), P=1.3 kPa; function of P

Primary Products: HC1l, CCl,

T/D: 165<B<2200(IC) for 200 p.p.m., 6400 for 5 p.p.m.
excitation

Difluoromethane (CHpFz)

D/H: $(0.2)=1800, $(23) = 350 pear 954 cm~?

D/H: depends on P, £(¢)=(¢/20)°, <20 at highest P studied
Primary Products: HF + CHF
D/H: 1800<B<3500 (1ID)
Laser energy requirements 51 GJ¢/ky tor heavy water
production, makeup 13 kg CHzFz/kg D20

Chlorodifluoromethane (CHClF;)

D/H: $(¢) for Clz 1OR(28) 1lUR(34), and 9P (30) to YP(42)
Suygestion of two step exchange with water and HC1l at 425°C
primary Products: HC1l + CHz

sugyestion that g>10% (IC) possible tor D/H

Dichilorofluoromethane (CHCl>F)

D/H: S(¢) high for 920 - 960 cm=!. 5(0)=400V for T = 200 K, C12 10P(3¥)
Quantitative at 10U®C, NaUH/bMSU catalyst. Faster than fluorotorm,
hydrolysis slower

£(¢)=exp(=13/¢)

Primary channel: HCl + CHC1

D/H: g>10* when Br, added; <4000 at natural abundance,

$olubility 6.6 times that of fluoroform.

C. Haloethanes

2,2=-bichloro-1,1,l-trifluorocethane

D/H: Near 944 cm~', s(U) = 100, S(10) = 40

Rapid base catalysed exchanye with HpU, hydrolysis slow
Ubserved products: HCl, CK,CFH, CFCHCL

D/H: B=1400 (IA) tor ¢=10 J/cm

Laser energy requirements 1TJ¢/Kg D0

2-Chloro-1,1,1,2-tetratluorcethane

Tritiated molecule underyoes MPDL at lower fluences than fluoroform
Primary products: HC1l + CoFy

T/H: 8=600

High pressure selectivity can be achieved for 2 ns pulses

Pentafluoroethane

T/H: S(¢) high for Cl2 10r(20) line. T/bL: s(¢) high for 1uP(34) line

T distributed amony several free radical products. Both HF elimination
and C-C bond breakiny seen )
T/H: B>500 (Ia, IC) T/D: 8=3000 (IC). Cooling improves B

2-Bromo-1,1,1,2-tetraflucroethane

D/H: S(¢) high 900 and 1000 cm~!.
Exchanges with water with NaOH/DM?O catalyst 5

For tritiated molecule at 931 cm™ , t($)=(13.1/¢)°, ~20% of the
"critical fluence” of CTFj3

T/H: 8>2700 (IAa)

High B for two-colour

(51,

(17,28-40)
(41)

(12,42)

(43-45)
(46)
(48,49)
(45)

(42,50)

(12)
(12)
(12)
{(12)

(12)

(51~-53)
(52)
(54-56)
(52)

57,60,61)

(51,58)
(6V)

(54)
(51,58,060)
(60)

(l2)
(62)
(62,63)
(62)
(62)

(64)
(65)
(64)
(05)

(66,67)

(66-68)
(66,08)

T/H: S(¢) high for 930 to 908 cm™' with NL (69)

(69)
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D. MHalopropanes

1. n-Heptafluoropropane

1.- T/H: S(¢) high for Cl2 10P(38) line

(70)
2, Base catalysed with bMSU, rapid (70)
3. MPD “critical fluence" 31% that of fluoroform (70)
4, Observed Products: CoF,, C2Fg, C2HFsg (70)
5. T/H: B=3.4 (IA) for tight focus, much higher for mildly focussed (70)
———— WY -
-2Z7 i-<Heptafluoropropane
1. T/H: S(¢) high for C1l2 1OR(30) line. Expected to be much higher for Cl13 {70)
2. Very rapid for base catalysed conditions (70)
3. MPD "Critical fluence”™ 11% that of fluoroform (70)
4., Observed Products similar to n-heptafiuoropropane (70)
5. T/H: B>1400 (IA) for Cl2 10R(30) line, Higher for Cl3 laser (70)

22.
i3,
24,
© 25,
26,
27.
28,
29,
30,
31.
32,

do.

34,
35,

36.
37.
38.

39,
40.
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Multiphoton dissociation of UF6 at A= 16 ym in supersonic jets
M. Gilbert, J.M. Weulersse, P. Isnard, G. Salvetat

IRDI/DESICP/Département de Physico-Chimie
Centre d'Etudes Nucléaires de Saclay
91191 Gaf-sur-Yvette Cédex France

Introduction

The myltiple photon excitation of UF, at 16 ym has been studied in a number of laboratories, in view of
its potential applications in urangum enrichment, using various,schemes : IR+UV /1/, IR+IR /2/. Because of
the small isotope shift : 0.61 cm ~, on the V, line at 627 cm ~, adiabatic cooling of UF. at temperatures

lower than 120 K, }g reggired to get UFS’ with“a simplified IR spectrum, at reasonably high molecular densities
in the order of 10™~ cm

In a more fundamental point of view, 1t 1s interesting to investigate the multiple photon phenomena in
UF. at low temperatures where it is prepared in a rather well defined vibrational state (at 100 K, 30 % of the
mo?ecules are in the fundamental vibrational state, a value to be compared with 4%, at 300 K). If
it is known that the multiple photon absorption changes markedly between 100 and 300 K /3/ , till now,
little has been published on the effects of temperature on UF6 dissociation.

For the vibrational excitation of UF_, several types of 16 ym lasers have been used during the past
five years : optically pumped CF, laser /4/, optical parametric oscillators /1,3/, stimulated Raman emission
in para—Hg pumped by a CO, laser /2/. The Raman source offer the possibility to generate a second beam at

o]

16 ym by Tour-wave mixing /5,6/, using a second CU2 laser pump with no energy or linewidth requirements on
this pump.

We report results on two-frequency multiphoton dissociation of UF, cooled at 90 K in a superscnic
expansion of Ar as the carrier gas, using a Raman source pumped by two TEA line-tunable CO2 lasers. Additional

data were obtained on multiphoton absorption of UF6 at low and ambient temperatures, and on vibrational relaxa-

tion of UFS'

Diagnostic of dissociation

*
HF fluorescence has been used many times as a diagnostic of UF6 dissociation since the first publica-
tion by Tiee and Wittig /7/.

The unimolecular dissociation of UF6 :

(Eq. 1) UF6 + v.h»’———p UF5 + F 3 = 38 IR photons

diss
occurs at a significant rate for n=55 photons absorbed in the molecule /8/. If UF6 is excited in the presence

of H2, a series of reactions takes place ; among them the basic ones are :
(Eq. 2) Foky —5 HE (v=1-3) + H \
(Eq. 3) HF* (v = 1-3) ——> HF(v = 0) (vibrational relaxation)

* *
IR fluorescence emission of HF at 2.2 - 2.9 pm, is observed, that has the time evolution of WF'] -
(Eq. 4) [H) =[Flo. __Ca_  [exp (-t/T,) - exp (t/T))]
-1 C,-T
where T, = k. [H)] "2 ™

From the absolute value and the temporal shape of the fluorescence signal, the initial concentration
[F o and, as a consequence, the number of dissociated UF6 molecules can be determined.

The above analysis is simplified and does not take into account neither secondary reactloQF related to
the unimolecular dissociation of UFG, such as :

. ' *
(Eq. 5) H +UF, -—% HF =+ UF

6 5

* . . . .
nor the bimolecular reaction of H2 with UF6 molecules excited under the unimolecular dissociation threshold

(<55)

* L ] *
(Eg. 6) UFg* (n<55) + H, —= UFg + H + HF
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