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PREFACE

The purpose of this work is to present, in an essentially self-contained form,
a survey of the mathematics of Galerkin finite element methods as applied to parabolic
problems. The selection of topics is not meant to be exhaustive, but rather reflects
the author's involvement in the field over the past ten years. The goal has been
mainly pedagogical, with emphasis on collecting ideas and methods of analysis in simple
model situations, rather than on pursuing each approach to its limits. The notes thus
summarize recent developments, and the reader is often referred to the literature for
more complete results on a given topic. Because the formulation and analysis of Galer-
kin methods for parabolic problems are generally based on facts concerning the corre-
sponding stationary elliptic problems, the necessary elliptic results are included in
the text for completeness.

The following is an outline of the contents of the notes:

In the introductory Chapter 1 we consider the simplest Galerkin finite element
method for the standard initial boundary value problem with homogeneous Dirichlet
boundary conditions on a bounded domain for the heat equation, using the standard
associated weak formulation of the problem and employing first piecewise linear and
then more general piecewise polynomial approximating functions vanishing on the
boundary of the domain. For this model problem we demonstrate the basic error esti-
mates in energy and mean square norms, first for the semidiscrete problem resulting
from discretization in the space variables only and then also for the most commonly
used completely discrete schemes obtained by discretizing the semidiscrete equation
with respect to the time variable.

In the following five chapters we consider several extensions and generalizations
of these results in the case of the semidiscrete approximation, and show error esti-
mates in a variety of norms. First, in Chapter 2, we express the semidiscrete problem

by means of an approximate solution operator for the elliptic problem in a manner



v

which does not require the approximating functions to satisfy the homogeneous boundary
conditions. A discrete method of Nitsche based on a non-standard weak formulation of
the elliptic problem is used as an example. In Chapter 3 more precise results are
shown in the case of the homogeneous heat equation. These require an accurate descrip-
tion of the smoothness of the solution for given initial data, expressed in terms of
certain function spaces 1%(Q) which will be used repeatedly in these notes and which
take into account both the smoothness and the boundary behavior of its elements. We
also demonstrate that the smoothing property of the solution operator for positive
time has an analogue in the semidiscrete situation and that, as a consequence, the
finite element solution then converges to full order even when the initial data are
non-smooth. The results of Chapters 2 and 3 are extended to more general parabolic
equations in Chapter 4. In Chapter 5 some apriori bounds and error estimates with
respect to the maximum-norm are derived in a simple situation, and in Chapter 6 nega-
tive norm estimates are shown, in certain cases together with related results con-
cerning the convergence at specific points (superconvergence).

In the next three chapters we consider the discretization in time of the semi-
discrete problem. First, in Chapter 7, we study the homogeneous heat equation and give
analogues of our previous results both for smooth and for non-smooth data. The methods
used for time discretizations are of one-step type and rely on rational approximations
to the exponential, allowing the standard Euler and Crank-Nicolson procedures as
special cases. In Chapter 8 we study completely discrete one-step methods for the in-
homogeneous heat equation in which the forcing term is evaluated at a fixed finite
number of points per time step. In Chapter 9 we apply Galerkin's method for the time
discretization and seek discrete solutions as piecewise polynomials in the time
variable which may be discontinuous at the nodes of the now not necessarily uniform
partition of the time axis. In this procedure the forcing term enters in integrated
form rather than at a finite number of points.

In Chapter 10 we discuss the application of the standard Galerkin method to a
nonlinear parabolic equation. We show error estimates for the semidiscrete problem
and then pay special attention to the formulation and analysis of time stepping pro-

cedures which are linear in the unknown functions.



In the following three chapters we consider various modifications of the stan-
dard Galerkin method. In Chapter 11 we analyze the so called lumped mass method for
which in certain cases a maximum principle is valid. In Chapter 12 we discuss the H1
and H—1 methods. In the first of these, the Galerkin method is based on a weak for-
mulation with respect to an inner product in H1 and for the second, the method uses
trial and test functions from different finite dimensional spaces. In Chapter 13, the
approximation scheme is based on a mixed formulation of the initial boundary value
problem in which the solution and its gradient are sought independently in different
_spaces.

In the final Chapter 14 we consider the singular problem obtained by introducing
polar coordinates in a spherically symmetric problem in a ball in R3 and discuss
two Galerkin methods based on two different weak formulations defined by two different
inner products.

References to the literature are given at the end on each chapter. The numbering
of theorems, lemmas and formulas is made for each chapter separately, and when a

reference is made to a different chapter this is explicitly stated.

These notes have developed from courses that I have given at the University of
Queensland, Australia, in 1979, Université Pierre et Marie Curie (Paris VI) in 1980,
and Jilin University, China, in 1982, and also, of course, from my teaching over the
years in my own university, Chalmers University of Technology, Gdteborg, Sweden. I
wish to thank all my students and colleagues in these institutions for the inspira-
tion they have provided. Most of my own work in this field has been intimately con-—
nected with my association during more than a decade with J.H. Bramble, A.H. Schatz
and L. Wahlbin of Cornell University and I wish to express my gratitude to them for
their congenial collaboration and to the U.S. National Science Foundation for support-
ing this collaboration during 12 summers.

Finally, I wish to thank Stig Larsson and Nie Yi Yong, who have read the whole
manuscript in detail and are responsible for many improvements, and Boel Engebrand
who so expertly typed these notes.

Goteborg in December 1983

Vidar Thomée
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1. THE STANDARD GALERKIN METHOD.

In this introductory chapter we shall consider the standard Galerkin method for
the approximate solution of the initial-boundary value problem for the heat equa-
fion.

Let © be a domain in RY with smooth boundary 932 and consider the initial-

boundary value problem

(1) u ~Au = £ il g EQhe )
u=0 on 30x[0,»),
wGe D) =rvlx) Gin @

where u, denotes 9du/3t and A = Z? 32/3x§ the Laplacian. In the first step we
shall want to approximate u(x,t) by means of a function uh(x,t) which, for each
fixed t, belongs to a finite-dimensional linear space Sh of functions of x with
certain approximation properties. This function will be a solution of a finite system
of ordinary differential equations and is referred to as a semidiscrete solution. We
shall then proceed to discretize (1) also in the time variable so as to produce a
completely discrete scheme for the approximate solution of our problem.

Before we turn to the differential equation, we consider briefly the approxima-
tion of smooth functions in & which vanish on 3Q. For concreteness, we shall
exemplify by piecewise linear functions in a convex plane domain.

Thus let 3; denote a partition of  into disjoint triangles T such that
no vertex of any triangle lies on the interior of a side of another triangle and

such that the union of the triangles determine a polygonal domain th:Q whose

boundary vertices lie on 392 (cf. fig.).



Let h denote the maximal length of a side of the triangulation ;7;. Thus h
is a parameter which decreases as the triangulation is made finer. We shall assume
that the angles of the triangulations are bounded below, independently of h, and
often also that the triangulations are quasi-uniform in the sense that the triangles
of .7; are of essentially the same size, which may be expressed by demanding that
the area of 1 in .7; is bounded below by ch2 with ¢ > 0 independent of h.

Let now Sh denote the continuous functions on the closure Q@ of § which are

h

linear in each triangle of :7; and which vanish outside Qh. Let {Pj}1 be the

interior vertices of 3;. A function in Sh is then uniquely determined by its values

at the points Pj and thus depends on N, = parameters. Let wj be the '"pyramid
function" in Sh which takes the value 1 at Pj but vanishes at the other vertices.
N

Then {wj}1h forms a basis for S , and every x in Sh admits the representation

h’

N

()= Tap i), with s = (L)
i i ¥ Ll

Given a smooth function v on £ which vanishes on 3%, we can now, for in=
stance, approximate it by its interpolant Ihv in Sh’ which we define by requiring
that it agrees with v at the interior vertices, i.e. IhV(Pj) = v(Pj) for

j-= 1,...,Nh. We shall need some results concerning the error in this interpolation.

We shall denote below by

the L2 or mean square norm over § and by

that in the Sobolev space 1 (@) = W;(Q). Thus, for real-valued functions v,

vl = (] Va2,
9]

and for r a positive integer,



i el (2
vl = ¢ = Io%)15HY2,
aj<r
a ™ %4
where with a = (a1,...,ad), D = (3/8x1) e (3/8xd) denotes an arbitrary deri-
d
vative with respect to x of order |aim % so that the sum contains all such

i=
derivatives of order at most r. We recall that for functions in Hg(Q), i.e. the

functions v with Vv = gradv in LZ(Q) and which vanish on 9@, ||Vv|| and HvH1
are equivalent norms.
The following error estimates for the interpolant just defined are well-known,

namely
2
Irv-vl < cn?llvll, »
and

191, v-9vl] < cullvll, ,

where, as will always be the case in the sequel, the statements of the inequalities
assume that v is sufficiently regular for the norms on the right to be finite.

We shall now return to the general case of a domain & in Rd and assume that
we are given a family {Sh} of finite-dimensional subspaces of Hé(ﬂ) such that for

some integer r > 2 and small h,

@ ing (lvx|l+blp 0 11 < ebllvll . 1<s<r, for vER @ nHy@) .
V€ Sh

The above example of piecewise linear functions corresponds to d=r=2. Also in the
general situation estimates such as (2) may often be obtained by exhibiting an inter-—

polation operator Ih into Sh such that

(3) [|Ihv-v||+hHV(Ihv—v)|| < ChSHvHS, I¢s<r,

For the case that 99 is curved and r > 2 there are difficulties near the boundary,
but the above situation may be accomplished, in principle, by mapping a curved Eris
angle onto a straight-edged one (isoparametric elements). We shall not dwell on this.
The optimal orders to which functions and their gradients may be approximated
under our assumption (2) are 0(h") and O(hr_1), respectively, and we shall attempt

below to obtain approximations of these orders for the solution of the heat equation.



For the purpose of defining thus an approximate solution to the initial boundary
value problem.(1) we first write this problem in weak form: We multiply the heat equa-
tion by a smooth function ¢ which vanishes on 99, integrate over {, and apply
Green's formula to the second term, to obtain, for all such ¢, with (v,w) denoting

the inner product J vwdx in LZ(Q),
9]
(ut,w)ﬁ-(Vu,Vw) = (@) Fefor ot 5 0F,

We may then pose the approximate problem to find uh(t), belonging to Sh for

each t, such that

(4) (u t’X) +(Vuh,Vx) =l oraal Teoian 18 t> 07,

h h’

together with the initial condition

uh(O) BV

where vy is some approximation of v in Sh. Since we have only discretized in the

space variables, this is referred to as a semidiscrete problem. Later, we shall dis-

cretize also in the time variables to produce completely discrete schemes.
N

In terms of a basis {wj}1h for Sh our semidiscrete problem may be stated:
Find the coefficients aj(t) in
Nh
uh(x,t) = .% aj(t)wj(X)
3=1
such that
Nh Nh
' = =
j§1aj(t)(wj,wk) +j§1otj(t)(V(DJ.,V<Dk) (£,0), &k =1,....N,

and, with Yj the components of the given initial approximation Vi

aj(O) = Yj ERONG (K 1,...,Nh.

In matrix notation this may be expressed as
An'(t) + Boe) = for t >0, with a(0) =x,

where A = (a.

Jk) is the mass matrix with elements ajk = (wj,wk), B = (b.,) the

jk

it s o i



. . . i 5y V . T . . =
stiffness matrix with ka ( wJ,Vwk), f (fk) the vector with entries fk (f,wk),
a(t) the vector of unknowns aj(t) and Yy = (Yk). The dimension of all these items

equals Nh’ the dimension of Sh.

Since the mass matrix A is a Gram matrix, and thus in particular positive de=
finite and invertible, the above system of ordinary differential equations may be

written

1 i oo

QU(E) + A ‘Balt) s & o for tto> 0 Ywith (a(0)=1y,

and hence obviously has a unique solution for positive t.
We shall prove the following estimate for the error between the solutions of the

semidiscrete and continuous problems.

Theorem 1. Let uy and u be the solutions of (4) and (1), respectively. Then

i
Huh(t) —u(t) || < ”"h""“"chr{HVHr*Jo HutHrds} for 6> O

Here we require, of course, that the solution of the continuous problem has the
regularity implicitly assumed by the presence of the norms on the right and that v

vanishes on 9. Note also that if (3) holds and A Ihv, then the first term on

the right is dominated by the second. The same holds true f ¥ POV, where PO

denotes the L -projection of v onto since this choice is the best approxima-

2 Sh’
fion of v . in Sh with respect to the L2 norm. Another such optimal order choice

of vy is the projection to be defined next.

For the purpose of the proof of Theorem 1 we introduce the so called elliptic
or Ritz projection P1 onto Sh as the orthogonal projection with respect to the

inner product (Vv,Vw), so that
(5) (VP1u,Vx) 2 VL) o Py an Sh'

In fact, P1u is the finite element approximation of the solution of the corresponding

elliptic problem whose exact solution is u. From the well established error analysis

for the elliptic problem we quote the following error estimate.



Lemma 1. With P1 defined by (5) we have

e v=vll+ |7 v-v)l| < c®llvll, for 1<s<r, vers@nuy@ .

Proof. We start with the gradient. We have using (5)

HV(P1v—v)||2 = (V(P1v—v),V(P1v-v)) - (V(P1v—v),V(x—v))

< |[V(P1v-v)|l lvGe-9ll
and hence by (2),

I9@v-v) < inf [[v&x-vI| < vl .
€ Sh

For the L2 norm we proceed by duality. Let ¢ be arbitrary in LZ(Q), take

Y e HZ(Q)rIHé(Q) as the solution of
-Ay =@ in £, ¥ =0 on 039,
and recall the a priori inequality

ol < cllall = cloll -
Then
(P1v—v,®) = —(P1v—v,Aw) = (V(P1v—v),V¢) = (V(P1v—vLV(w—P1¢))

<llvev=n| [Ive-2 i< co® vl wllvll, < eollvll llell

which completes the proof if we choose ¢ = P1v-v.

We now turn to the proof of Theorem 1. In the main step we shall compare the
solution of the semidiscrete problem to the elliptic projection of the exact solu-

tion. We write

(6) u, -u = (uh—P1u) + (P1u—u) =0+p.

h

The second term is easily bounded by Lemma 1 and obvious estimates:

t t
lloe) ]l < en™[luelll | = cn”[lv+ Jo uds|| < Chr{”vHr+J0 llu Il as} .



In order to estimate 0, we note that

@ (8,30 + (76,7 = (50 + (Vuy ;90 = (Byu,x0 = (VByu, 950

Un,t
= (£,%) - (P1ut,x) - (Vu,Vy) = (ut_P1ut’X)’

or

(8) (et,x) + (Ve,Vx) = —(pt,x) ForoF. in Sh.

In this derivation we have used the definition of P1 and the easily established

fact that this operator commutes with time differentiation. Since 6 belongs to Sh

we may choose x = 6 in (8) and conclude

) (8,,0) + [|vo ]| = =(o,,0) ,

or, since the first term equals %—g% lleHZ and the second is non-negative,

12 1ol <o, Il llell -

This yields
d
T llell < HDCH,

or, after integration,

€
locoll < lo@li+ | llo,las
Here
1o | = llvy=pvil < lvvil+lizv=vll < lv~vll+enlvll,
and further
oIl = 17yu el < el

Together these estimates show the theorem.

In the above proof we made use in (9) of the fact that Hvellz is non-negative.
By a somewhat less wasteful treatment of this term one may demonstrate that the effect
of the initial data upon the error tends to zero exponentially as t grows. In:fact,

with A1 the smallest eigenvalue of =-A with Dirichlet boundary data, we have



2 2
oxll™ > x, [xll for X€S, ,
and hence (9) yields

g 2 2
14 10+ n loll® <o, Il llell,

or

d

Lilofl+, Nlell <ol
and

—)\1t ¢ —)\1(t—s)
ol <o "o + | e o, ()]lds
0
At g e t —)\1(t—s)

ce Ulyovlivantte vy« | e luy ()] yds) -

Since

2
o] < eaflute) ], ,
we conclude that

l|uh(t:) =u(t)||

=), t -\ —A1(t—s)

1 3. Ak .
set livwlisonite dvllowlluil, +f o llu ()] ,ds} .
0

We shall not.pursue this analysis for large t below.

We shall briefly look at another approach to the proof of Theorem 1 which con-

sists in working with the equation for 6 in operator form. For this purpose we
introduce a "discrete Laplacian" Ah, which we think of as an operator from Sh

itself, by

(Ahw,x) = =(Vy,Vx) for X dn Sh;

N
h
this analogue of Green's formula clearly defines Ahw =. X djwj from
ik
Nh :
j§1dj(t0j,¢k) o ‘(V‘P,Vq)k), o= 1,""Nh >

since the matrix of this system is the positive definite mass matrix encountered

above. The operator Ah is easily seen to. be selfadjoint and —Ah is positive



definite. Note that Ah is related to our other operators by

(10) AR, = PoA .
For,witk xE€ Sh,

(AhP1v,x) = —(VP1v,Vx) = —-(Vv,Vx) = (Av,x) = (PoAv,x)-

The semidiscrete equation now takes the form

(uh,t’x) -(Ahuh,x) = (Pof,x) PoraSan iy Sh,
or, since the factors on the left are all in Sh,
uh,t—Ahuh = Pof

Using (10) we hence obtain for ©

et-AhB = (uh,t—Ahuh) - (P1ut—AhP1u)
= P0f+ (PO—P1)ut—Po(ut—Au) = PO(I-P1)ut = —Popt 3
or
(11 0 8,8 = -Pop -
Let us denote by Eh(t) the solution operator of the homogeneous semidiscrete
equation

u =hiws =000 for it a0

i.e. the operator which takes the initial data uh(O) = into the solution uh(t)
.at time t, so that 'uh(t) = Eh(t)vh. (This operator can also be thought of as the
semigroup generated by —Ah.) Duhamel's principle then tells us that the solution of

the inhomogeneous equation (11) is
€
o(t) = Eh(t)G(O) - Jo Eh(t—s)POpt(s)ds i
We now note that Eh(t) is stable in L,, or, more precisely,

HEh(t)vhHithH for v, in §,s t20.



