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Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this “lecture notes” character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography, and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should be in English. They should contain at least 100 pages of

scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Introduction

The basic task in real algebraic (or better semialgebraic) geometry is to study the set of
solutions of a finite system of polynomial inequalities over a real closed field R. Such a set
is called a semialgebraic set over R. The semialgebraic subsets of R™ are obtained from the
basic open sets

U(P)={z € R" | P(z) > 0},

where P € R[Xy,...,Xy] is a polynomial, by finitely many applications of the set theoretic
operations of uniting, intersecting and complementing. The interval topology of R induces a
topology on every semialgebraic set over R called strong topology. Unfortunately the arising
topological spaces are totally disconnected, except in the case R = R. This pathology can
be remedied. Strong topology is replaced by semialgebraic topology, a topology in the sense
of Grothendieck (cf. [A]): Only open semialgebraic subsets are admitted as ,open sets”, and
essentially only coverings by finitely many open semialgebraic subsets are admitted as ,,open
coverings”. These restricted topological spaces are the basic objects studied in semialgebraic
topology. (For details concerning this and other notions from semialgebraic geometry we refer
to [Br], [BCR], [DK], [DK3], [DK4]).

It is easier to study not only semialgebraic sets which are embedded in some algebraic variety
over R but to study more generally spaces which, locally, look like a semialgebraic set. This
observation leads to the notion of semialgebraic spaces.

An affine semialgebraic space over R is a ringed space which is isomorphic to a semialgebraic
subset IV of some affine R-variety V equipped with its sheaf Oy of semialgebraic functions (cf.
[DK]). N is considered in its semialgebraic topology. A locally semialgebraic space (M, Oyr)
over a real closed field R is a ringed space (Ojs the structure sheaf) which posesses an
admissible open covering (U; | 7 € I) such that (U;, Oy | U;) is an affine semialgebraic space
over R for every i € I (cf. [DK3], [DK4]).

The category of locally semialgebraic spaces seems to be the appropriate framework for
topological considerations over an arbitrary real closed field. (For the study of many questions
especially in homotoy theory it turns out to be very useful to work in the even larger category
of weakly semialgebraic spaces, cf. [K,]).

This book is a contribution to the fundamentals of semialgebraic topology and consists
of two main parts. The first is primarily concerned with the study of sheaves and their
cohomology on locally semialgebraic spaces. In the second part we develop a homology
theory for locally complete locally semialgebraic spaces over a real closed field R. It is
the semialgebraic analogue of the homology for locally compact topological spaces intro-
duced by Borel and Moore ([BM]). Finally we apply the sheaf and homology theory to va-
rieties over an algebraically closed field of characteristic zero and develop a semialgebraic
(.topological”) approach to intersection theory on these varieties.
A first observation is that a sheaf F on a locally semialgebraic space M over R is not deter-
mined by its stalks 7,z € M, (Example 1.1.7). But fortunately we may embed M into a
space M which

- is a topological space in the usual sense

- has the same sheaf theory as M.
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If M is a semialgebraic subset of an affine R-variety V, then A/ is just the associated
constructible subset of the real spectrum Sper R[V] of the coordinate ring of V' (cf. |,
§1). The space M can be endowed with a structure sheaf Oy In this way it becomes
a locally ringed space which locally looks like a constructible subset A" of some real spectrum
Sper A equipped with the sheaf of abstract semialgebraic functions on /" defined by Brumfiel
([Bry]) and Schwartz ([S], [S1]) (see also [Dy, §1]). Such a space is called an abstract locally
semialgebraic space. In Chapter || we investigate sheaves on these spaces. This has the great
advantage that abstract locally semialgebraic spaces are topological spaces in the classical
sense and therefore classical topological sheaf theory applies to them. (But notice that these
spaces are almost never Hausdorff). Since the sheaf theories on A/ and M coincide, our results
are also valid for locally semialgebraic spaces over a real closed field.

In Chapter | we present a short introduction to the theory of abstract locally semialgebraic
spaces. We give the definition and explain the connection with the geometric case (&1).
Important classes of subsets of a given space are endowed with a subspace structure in §2.
Some basic notions which turn out to be useful in sheaf theory are defined and discussed in
§3. The subspace X™?* of closed points of an abstract locally semialgebraic space X often
is a ,nice” topologcial space. In §4 we explain, for example, under what conditions X™M# s
a locally compact space. The most important class of locally semialgebraic spaces consisting
of the regular and paracompact spaces is investigated in §5.

Slightly more generally N. Schwartz considers in [S;] spaces which locally are proconstructible
subsets of a variety. He calls these spaces ,real closed spaces”. Most of the results in chapter
Il may be easily extended to this more general case. In chapters !l and IV we study only the
geometric case, locally semialgebraic spaces over a real closed field, and for this purpose the
notion of abstract locally semialgebraic spaces as introduced in chapter | is sufficient.

Chapter Il is devoted to the study of sheaves on abstract locally semialgebraic spaces. In
particular we deal with the cohomology groups of a space X with coefficients in a sheaf F and
support in a family ® of closed subsets. Usually we are only interested in families ® of supports
which are generated by their locally semialgebraic members. We define paracompactifying
support families ® (this notion is different from the corresponding notion in topological sheaf
theory!) and discuss some relations between the properties of ® and ® N XM (§1). The
homomorphisms induced in cohomology by locally semialgebraic maps are described in §2.
There we also prove that homotopic maps induce the same homomorphism in cohomology.
Applying this result we see that, in the geometric case, it is sometimes possible to replace
certain families of supports by paracompactifying ones.

Since regular and paracompact locally semialgebraic spaces in many ways show a similar
behaviour as paracompact topological spaces, sections of a sheaf over a partially quasicompact
subset can be extended to a neighbourhood (§3). This is one of the main reasons why soft
sheaves are acyclic as is shown in §4. There is another important class of acyclic sheaves
consisting of those sheaves which are flabby in the semialgebraic sense. The results on acyclic
sheaves are applied in §5 to describe the cohomology of certain subsets. In particular we learn
how the cohomology groups of X and X™** and how the cohomology groups of M and Mo,
are related (where Af is a space over the field R of real numbers and Alyop i1s the set A
considered in its strong topology).



Vil

One of the central results of the book is proven in §6: The cohomology groups of a locally
semialgebraic space over a real closed field R with coefficients in a sheaf and arbitrary supports
do not change when the base field R is extended. We need this result in §7 to derive the
semialgebraic proper base change theorem. This base change theorem is generalized to the
case of non proper locally semialgebraic maps in §8. In §9 and §10 we state some facts about
the cohomological dimension of geometric spaces and hypercohomology which are needed later
on.

Chapter Ill deals with semialgebraic Borel-Moore-homology. This is a homology theory de-
signed for locally semialgebraic spaces over a real closed field R which are locally complete.
Recall that topological Borel-Moore-homology is defined for locally compact spaces and the
notion ,locally complete” is the semialgebraic substitute for ,locally compact”. Every affine
semialgebraic space M (and more generally every paracompact regular locally semialgebraic
space) can be triangulated, i.e. it is isomorphic to a simplicial complex X over R (cf. [DKy,
§2], [DKs3, I, §4], introduction of chap. Ill). But in general the simplicial complex X is not
closed, i.e. there may be open simplicies o in X whose faces do not belong to X. Nevertheless
these simplicies should contribute to the homology of M. So it seems to be quite natural to
take the open simplices as building blocks of a homology theory (and not the closed simplices as
in classical simplicial homology). Following this idea we define Borel-Moore-homology groups
with constant coefficients and closed supports by use of triangulations and open simplices (§1
and §2). The basic properties of these groups are derived by easy ,simplicial arguments”. No
sheaf theory is needed for this elementary introduction to Borel-Moore-homology. We already
sketched this approach in [D;]. These elementary methods suffice to prove the substantial
result that every algebraic variety over R posesses a fundamental class (§3).

But of course there are also problems which are difficult to handle by more or less combinato-
rial considerations. A typical example is Poincaré duality for arbitrary families of supports. It
is possible to give an elementary proof but it is long and difficult because the combinatorics
involved is rather complicated. Here the use of sheaves turns out to simplify the problem
considerably.

Therefore we generalize our definitions in §2 and introduce Borel-Moore-homology groups
with arbitrary supports and coefficients in an arbitrary sheaf in §5. In particular the important
case of locally constant sheaves is included. The groups are defined by means of a complex
(Ak | k € Z) of sheaves of simplical chains (see §4). The sheaves Ay are similar to the sheaves
of PL-chains in PL-topology. The main differences to P L-theory are that we work with open
instead of closed simplices and that a simplicial chain is identified with all its semialgebraic
and not only with its linear subdivisions. Semialgebraic subdivision is discussed in §4.

Using weakly semialgebraic spaces and a lot of homotopy theory M. Knebusch was able to
prove the really nontrivial result that the semialgebraic homology with compact support may
be calculated by singular chains, even if the base field R is non archimedian (cf. [K;]). So
the sheaf theoretical approach to homology might also be based, as in classical topology [B],
on the sheaves of locally finite singular chains. The semialgebraic triangulation theorem im-
plies that the sheaves of simplicial chains have very nice properties. Therefore it is really an
advantage to work with them. For example, the sheaves Ay are flabby in the semialgebraic
sense and the basic properties of Borel-Moore-homology can be easily deduced from the sheaf
theory developed in Chapter Il.
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In §6 we study the functorial behaviour and in §7 the homotopy invariance of Borel-Moore-
homology. A cap product between cohomology and homology is introduced in §8. The proof
of a general Poincaré duality theorem is given in §9. In §10 we investigate the behaviour of the
Borel-Moore-homology when the real closed groundfield R is enlarged. The relation between
the semialgebraic homology of a locally semialgebraic space M over R and the topological
Borel-Moore-homology of M™* (resp. Mo, if R = R) is discussed in §11. Finally we show
in §12 that the semialgebraic Borel-Moore-homology groups could also be defined by use of in-
jective resolutions and duals of complexes of sheaves. Such a definition would be analogous to
the definition given by Borel and Moore in the topological case ([BM]). (Dualising complexes
were also used to define étale Borel-Moore-homology for varieties over arbitrary algebraically
closed fields, cf. [DV, exp. VIII]).

In Chapter IV we discuss some aspects of intersection theory. We take an algebraically closed
field C of characteristic zero and choose a real closed field R C C with C = R(y/—1). In §1 we
prove that every locally isoalgebraic space over C' (cf. [Hu] or Appendix, §1, for the definition)
posesses a fundamental class. Using Poincaré duality we establish an intersection product in
the homology of locally semialgebraic manifolds (§2). This intersection product enables us
to define the intersection of locally isoalgebraic cycles on a locally isoalgebraic manifold (§3).
In particular we are able to describe the algebraic intersection multiplicities of subvarieties of
a smooth algebraic variety V over C in a purely ,topologcial” (i.e. semialgebraic) way, and
we obtain a multiplicative homomorphism A,(V) — H,(V') from the Chow ring of V to the
semialgebraic Borel-Moore-homology.

Throughout this book R is a real closed field. All rings are assumed to be commutative with
1. The real spectrum of a ring A is denoted by Sper A. (The basic theory concerning real
spectra is contained in [BCR],[CR] or [L]). The sections of a sheaf F over an open set U are
denoted by (U, F). If objects B and C are canonically isomorphic, then we often simply
write B = C. A list of symbols and an index may be found at the end of this book.

| wish to thank M. Knebusch, R. Huber, R. Robson and N. Schwartz for many helpful
discussions on the subject. Finally special thanks are due to M. Richter and R. Bonn for
their patience and excellence in typing the manuscript.

Regensburg, May 1991

Hans Delfs
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CHAPTER I: Abstract locally semialgebraic spaces.

This chapter contains a short introduction to the theory of abstract locally semialgebraic
spaces. We present the basic definitions and some observations needed in the subsequent
parts of these notes.

§1 - Abstract and geometric spaces

We refer the reader to [DKj] for an extensive treatment of locally semialgebraic spaces over
the real closed field R. A survey about the basic theory over R is also given in [DK,]. As
in algebraic geometry it is sometimes useful to study not only these ,geometric spaces” but
also a more general class of ,abstract spaces”. This was made possible by the introduction of
abstract semialgebraic functions (cf. [Bry, §3], [S], [S1]. [D2. §1]) on the real spectrum (cf.
[BCR], [K;]) of an arbitrary ring A (commutative, with 1).

Definition 1. a) Let Sper A be the real spectrum of a ring A. A pair (K, O) consisting of
a constructible subset K of Sper A and the sheaf Oy of abstract semialgebraic functions on
K ([D,, §1]) is called a semialgebraic subspace of Sper A.

b) An abstract affine semialgebraic spaceis a locally ringed space (X, Ox) which is isomorphic,
as a locally ringed space, to a semialgebraic subspace (K, Of) of an affine real spectrum
Sper A.

c) An abstract locally semialgebraic spaceis a locally ringed space (X, Ox) which has an open
covering (X; | ¢« € I) such that (X;,Ox | Xi) is an abstract affine semialgebraic space for
every 1 € I. Such a covering (X; | 7 € I) is called an open affine covering of X. If X is in
addition quasicompact, then (X,Ox) is called an abstract semialgebraic space. (Note that
~quasicompact” means that X admits a finite open affine covering).

d) A locally semialgebraic map between abstract locally semialgebraic spaces (X, Oy) and
(Y,Oy) is a morphism (f,6) in the category of locally ringed spaces, i.e. f: X — Y is a
continuous map and 6 : Oy — f,Ox is a morphism of sheaves of local rings. We often omit
6 in our notation and simply write f: X — Y.

Abstract locally semialgebraic spaces were first defined and studied by N. Schwartz ([S], [S,]).
Slightly more generally he considers in [S;] spaces which locally are proconstructible subsets
of a variety. He calls these spaces ,real closed spaces”. We will use many of his definitions
and results.

We make the following general assumption: All abstract locally semialgebraic spaces (X, Oy)
are assumed to be quasiseparated ([S;], 11.4.14). This means that the intersection U NV of
any two open quasicompact subsets U,V of X is also quasicompact, or, equivalently, that
X; N X; is quasicompact for any two members X;, X, of an open affine cover (X; | ¢ € I) of

X ([Sy, 11.4.16)).

In the category of abstract locally semialgebraic spaces arbitrary fibre products exist ([S;,
[1.3.1]). The residue class field Ox ,/my , of a space X in a point z € X{Ox , the stalk
of Ox in z, my , the maximal ideal of the local ring Ox ;} is real closed and will always be
denoted by k(z).

If X is a semialgebraic subspace of Sper A, then k(z) is the real closure of the residue class
field A(p(z)) of A in p(z), the support of z, with respect to the ordering of A(p(z)) which
is induced by . The image of an element f € I(X,Ox) in k(z) under the natural map



MNX,0x) — Ox. — k(z) is denoted by f(z). The elements [ € T(X,Ox) are called
locally semialgebraic functions on X.

Definition 2. Let (X,Ox) be an affine abstract semialgebraic space. A subset Y of X is
called semialgebraic (or constructible) if Y is a finite union of sets of the form

{ze X | f(z)=0,gj(z)>0,j=1,...,s},
feT(X,0x),9; € T(X,0x)(1 <j <r). The set of semialgebraic subsets of X is denoted
by ¥(X).
Of course, if (X,0x) is a semialgebraic subspace of Sper A, then ['(X) consists of those
constructible subsets of Sper A that are contained in X.

Definition 3. Let (X,Ox) be an abstract locally semialgebraic space and (X; | ¢ € I) be
an open affine covering of X. A subset Y of X is called locally semialgebraic (or locally
constructible) if Y N X; is a semialgebraic subset of X; for every : € [. If Y is also
quasicompact, then it is called semialgebraic (or constructible). Since all spaces are assumed
to be quasi-separated, the intersection X; N X is a semialgebraic subset of X;, and it is easy
to see that our Definition 3 does not depend on the choice of the open affine covering of
X. The family of locally semialgebraic (semialgebraic) subsets of X is denoted by 7 (.X') (by
v(X)). By T(X) {%(X)} we denote the family of those sets in 7(X){ in 7(X)} which are
open in X, and by 7(X) {5(X)} the family of those sets which are closed in X.

From now on we usually omit the structure sheaves in our notation and simply write X instead

of (X,Ox).

Definition 4. A locally semialgebraic map f: X — Y is called semialgebraic (or quasicom-
pact) if f~1(A) is a semialgebraic (or, equivalently, a quasicompact) subset of X for every
semialgebraic subset A € 4(Y) of Y.

Every locally semialgebraic map f: X — Y whose domain X is a semialgebraic space is
semialgebraic.

The concept of an abstract locally semialgebraic space is the natural generalization of the
notion of a locally semialgebraic space over a real closed field R as we will explain now.

Example 1.1. Let V be an affine algebraic variety over R. We consider a semialgebraic
subspace (M, Opr) of V (cf. [DK, §7]). By definition, M is a semialgebraic subset of the set
V(R) of R-rational points of V, and Oy is the sheaf of semialgebraic functions on M. Here
the set M is considered in its semialgebraic topology (loc. cit.), and a function f: M — R
is called semialgebraic if it has a semialgebraic graph and is continuous with respect to the
strong topologies. Now let Sper R[V] be the real spectrum of the coordinate ring R[V] of
V. The set V(R) is contained in Sper R[V]. We may associate a constructible subset A of
Sper R[V] to every semialgebraic subset A of V(R) (cf. [CR, §5]). A is defined by the same
equalities and inequalities as A. It is the unique constructible subset A of Sper R[V] with
ANV(R) = A. The important point is that the sheaf theories on the semialgebraic space M
over R and the topological space M coincide (loc. cit.). More precisely, if F is a sheaf on
M, then we obtain a sheaf F on M by defining

N0, F):=T(U,F)



for every open semialgebraic subset U of M. (Note that the sets {7 form a basis of the
topology of 1\1) On the other hand, if G is a sheaf on M, then we get a sheaf F on M by
restriction:

[(U,F):=T(U,G).
Obviously we have F = G. The sheaf Oy of semlalgebralc functions on M corresponds to
the sheaf O of abstract semialgebraic functions on M. ie. Oy = Oy (cf. [Dz, 1.9]).

We see that it is quite natural to assign the abstract affine semialgebraic space (M, Oy) to
(M,0Opm).

The topological space M has the following useful description. We denote the family of
semialgebraic subsets of M by (M) and the family of open semialgebraic subsets by 5(M).
Let Y(M) be the set of ultrafilters of the Boolean lattice v(M). The sets

Y(U)M = (FeY(M)|U€F), Uei(M),

are the basis of a topology on Y (M). The set Y'(M) endowed with this topology is canonically
homeomorphic to M ([Bro, p. 260], [CC, §1]).

Now suppose W is another affine R-variety, (N,Oy) is a semialgebraic subspace of W and
f:M — N is a semialgebraic map (i.e. f is continuous and has a semialgebraic graph). The
map f induces a continuous map f:M — N which may be described as follows: The image

f(F) of an ultrafilter F € Y(M) is the ultrafilter of v(/N) generated by the sets f(A), A € F.

Composition with f yields a map of sheaves

6:0n = fLOpm
cf. [DK, §7 Now observe that (f,Opu)~ = ~.(5M = f. i Therefore § gives a map
( g
S:ON — fo©@ . This map & is a map of sheaves of local rings. So our given semialgebraic

map f: M — N yields a morphism (f,6) : (M, Oy) — (N,(’) ) in the category of abstract
semialgebraic spaces.

Using the definitions of locally semialgebraic spaces and locally semialgebraic maps over R in
[DK3, 1, 81] and Definition 1 above, it is now easy to see that the assignments

(M,0p) = (M,0)
= (f,9)
extend to a functor from the category of locally semialgebraic spaces over R to the category
of abstract locally semialgebraic spaces over R. This functor will always be denoted by ~
By use of ™~ we may consider the category of locally semialgebraic spaces over R as a full
subcategory of the category of abstract locally semialgebraic spaces over Sper R. The functor
~ also preserves fibre products ([S;, I11.2.1]). We may and will consider a locally semialgebraic

space M over R as a subset of M. The set M is dense in M and consists of the points z € M
with k(z) = R

Let M be a locally semialgebraic space over R. As in [DK;3] we denote the family of locally se-
mialgebraic subsets (open, closed locally semialgebraic subsets) of M by T(M)(7 (M), 7T (M))
and the family of semialgebraic subsets (open, closed semialgebraic subsets) by

1(M)(5(M),5(M)).



Proposition 1.2. Intersection with M,Y +— Y N M, yields canonical bijections
T(M)—»’T(M) ’T(M)——»’T(M) T(M ) T(M),
Y(M) =5 4(M), 5(M) = 3(M),5(M) = 3(M).

Proof. It suffices to prove this for a semialgebraic subspace M of an affine variety V over R.
In this case the result is well known ([CR, §5]).

if A € T(M), then A always denotes the (unique) locally semialgebraic subset of M with
ANM=A

Remark 1.3. Let f: M — N be a locally semialgebraic map between locally semialgebraic
spaces M, N over R. The explicit description of the map f: M — N in the affine case (cf.

Example 1.1) shows that f~1(A) = f~1(A) for every A € 'T(N) If f is semialgebraic then
f(B) € T(N) for every B € T(M) ([DK3 1.5.3]) and we have f(B) = f(B).

Again let M be a locally semialgebraic space over R. As in the affine case (cf. Example 1.1)
we assign a sheaf F on M to every sheaf F on M:

MY, F):=T(Y nM,F) (Y eT(M)).
Conversely, if G is a sheaf on M then we obtain a sheaf F on M by defining

MU, F):=0(,6) (UeT(M)).

Obviously these assignements are inverse to each other. Thus we have

Proposition 1.4. The categories of sheaves on M and M are canonically isomorphic.

So, for all questlons concerning sheaves, we may equally well work on M instead on M. For
example, since [(M, F) = (M, F) for every sheaf F on M the sheaf cohomology theories
of M and M coincide.

Corollary 1.5. HI(M,F) = H9(M,F) for every (abelian) sheaf 7 on M and every q > 0.

More generally, we may consider the direct image f,F of a sheaf 7 on M under a locally

semlalgebralc map f: M — N between locally semlalgebralc spaces over R. Since f~1(U) =
f- 1(T) for every U € T(N) (Remark 1.3), we have f‘f foF. Together with Prop. 1.4
this implies that the right derived functors R? f, and qu,(q > 0) of f, and f also ,.coincide”.

Corollary 1.6. (RIf,F)~ = RIf,F for every (abelian) sheaf F on M and every ¢ > 0.

In the following we often do not distinguish between sheaves on M and M, i.e. sheaves on
M are also regarded as sheaves on M (and vice versa). This turns out to be very useful since
M is a topological space in the usual sense. So a sheaf G on M is determined by its stalks
Gz(:=Gz),x € M. But, in general, it is not determined by the family (G;)zen of stalks in
the points of M.

Example 1.7. Let M =]0, 1] be the unit interval over R, considered as a semialgebraic space
over R. Then M is the set of ultrafilters of the Boolean lattice v (]0,1[). Let G be the
associated sheaf on M of the presheaf



z if 0=a<b
Ja, ol {0 else

Let z, be the ultrafilter generated by the intervals ]0,e[,e¢ > 0. Then G;, = Z, but G, =0

for every z € M.

We close this section with an example of a semialgebraic map.

Example 1.8. A homomorphism ¢:A — B induces a continuous map
f =Sperg:Sper B — Sper A (cf. [CR]). Let Osper 4 and Osper p be the sheaves of abstract
semialgebraic functions on Sper A and Sper B. Composing with f yields a homomorphism
Osper 4 — f+Osper g of sheaves of local rings (cf. [D,, Prop. 1.8]). In this way f becomes a
semialgebraic map between the abstract semialgebraic spaces Sper B and Sper A.

Henceforth an abstract locally semialgebraic space (X,Ox) will be simply called space or
abstract space. ,, Affine space " means ,affine (abstract) semialgebraic space”. A locally
semialgebraic space M over R is called a geometric space over R. The structure sheaves
will usually be omitted in our notation. Unless otherwise stated all maps between spaces are
locally semialgebraic maps.



§2 - Subspaces

In this section we explain how certain subsets Y of an abstract space X may be canonically
endowed with a subspace structure.

If Y C X is open, then obviously (Y,Ox | Y) is an abstract space, called an open subspace
of X ([S1. 11.2.3]). Note that Y is also quasiseparated.

Our next goal is to define a subspace structure on an arbitrary locally semialgebraic subset Y

of X.

Let U € %(X) be an open affine subspace of X and f:(U,0x | U) — (U',Oy-) be an
isomorphism onto some semialgebraic subspace (U’', Oy-) of some real spectrum Sper A. Let
K:=UNY and K':= f(K). Then K’ is a constructible subset of Sper A and we have
the sheaf Qg of abstract semialgebraic functions on K' C Sper A. Let f;: K — K' be the
restriction of f. We define Ok : = f;Of:. Then (K, Ok) is an affine (abstract) semialgebraic
space, and we have endowed Y with a subspace structure on the open affine part U of X.
Now suppose V € §(U) and g:(V,Ox | V) — (V',Oy:) is an isomorphism onto some
semialgebraic subspace (V', Oy) of some real spectrum Sper B. Let L:=V NY,L':= ¢(L)
and g; : L — L' be the restriction of g. Let Oy be the inverse image g; Oy, of the sheaf O,
of abstract semialgebraic functions on L' C Sper B.

Lemma 2.1. O, = Og | L.
Proof. cf. [Sy, I1.2].

Lemma 2.1. says that the subspace structures (U N Y,Opny) on the affine parts U NY,
U € 4(X) affine, glue together to form a subspace structure (Y,Oy) on Y. Obviously
(Y,Oy) is an abstract locally semialgebraic space and the inclusion map Y < X is a locally
semialgebraic map. These spaces (Y, Oy) are called the locally semialgebraic subspaces of

(X,Ox).

Example 2.2. Let (M,Opr) bea geometric space over Rand N € T(M). Then we equipped
N with a subspace structure (N, Oy) in [DKj3, §3]. Via the functor ~ the geometric space
(N,On) over R corresponds to the subspace NV of the abstract space (M, O ji7) we defined
here. This is a trivial consequence of the definitions.

Proposition 2.3. Let f: X — Y be a locally semialgebraic map between abstract spaces and
Z € T(Y). Assume f(X) C Z. Then the map g: X — Z obtained from f by restriction of
the image space is a locally semialgebraic map from X to the subspace Z of Y.

Proof. cf. [Sy, 11.2.15].

Finally we consider fibres of locally semialgebraic maps. So let f: X — Y be a map between
abstract spaces and let y € Y. There is a natural locally semialgebraic map

Sperk(y) = Speck(y) = Y

mapping the unique point of Speck(y) to y. We consider the fibre product X xy Sper k(y).
Let p: X xy Sperk(y) — X be the projection.



Proposition 2.4. p induces a homeomorphism

p1:X xy Sperk(y) — [} (y)-

Proof. cf. [S;, 11.3.2].

We shift the structure sheaf of X xy Sperk(y) to f~1(y) by p;. Then f~1(y) becomes an
abstract locally semialgebraic space. If f~1(y) is a locally semialgebraic subset of X, then the
space structure of f~!(y) defined here coincides with the subspace structure on f~!(y) we
considered before ([Sq, 11.3.2].

Notation. For an abstract space X we denote the affine space
X Xsperz SperZ[Ty, ..., Ty] over X by A%

Definition 1 (cf. [Sy, 11.7.1]). A map f: X — Y between abstract spaces X and Y is locally
of finite type if every x € X has an open neighbourhood U € 4(X) such that the restriction
flU:U —Y admits a factorization

h
U— K
N sp
Y
where & is an isomorphism from U onto some semialgebraic subspace K of some affine space

Ay and p is induced by the natural projection Ay — Y.
The following result is rather obvious (cf. [Sy, I11.1.3]).
Proposition 2.5. Let f: X — Y be a map between abstract spaces which is locally of finite

type. Then the fibre f/~!(y) over a point y € Y is a geometric space over k(y). (Of course
this means: There is a geometric space M over k(y) with M = f~1(y)).



§3 - Some basic notions
We carry over some of the notions introduced in [DKj3, Chap. I] to the abstract case.

Definition 1 ([S;, 11.4.1]). A map f:X — Y between spaces is called separated if the
diagonal map Ay = (id,id ): X — X xy X is closed.

A geometric space M over R is called separated if it is Hausdorff in its strong topology.
Proposition 3.1. Let M be a geometric space over R. Then M is separated if and only if
the map f: M — Sper R from M to the one-point-space Sper R is separated.

This is Theorem 111.3.1 in [S;4].
From now on all geometric spaces are assumed to be separated.

Definition 2 (cf. [DKj, I, §4, Def. 2]). An abstract space X is called paracompact if it
possesses a locally finite open affine covering (X; | ¢ € I).

Here ,locally finite" has its usual meaning in topology: Every z € X has a neighbourhood U
which meets only finitely many sets X;.

Remark 3.2. Since semialgebraic subsets of X are quasicompact, an open covering (X; | : €
I) of X is locally finite if and only if, for every U € J(X), all but finitely many sets X; have
empty intersection with U.

An immediate consequence of the definition is

Proposition 3.3. Every locally semialgebraic subspace of a paracompact space is paracom-
pact.

Proposition 3.4. An abstract space X is paracompact if and only if every open covering
(Xi |7 € I) posesses a locally finite refinement (Y; | j € J) with Y; € ¥(X).

Proof. See [DKj, |, Prop. 4.5].

N.B. Despite Prop. 3.4 our notation of paracompactness differs from the usual one in topology
since abstract spaces are almost never Hausdorff.

Definition 3 (cf. [DKj, |, §4, Def. 3]). An abstract space X is called Lindelof if it posesses
an open covering (X; | 7 € N) by countably many semialgebraic subsets X; € ¥(X).

Proposition 3.5. A space X is Lindelof if and only if every open covering (X; |7 € I) of X
has a countable refinement (Y; | 7 € N).

Proof. See [DK3, I, Prop. 4.16].
Proposition 3.6. Let X be a paracompact connected abstract space. Then X is Lindelof.

Proof. See [DKj, I, Prop. 4.17].



