APPLIED
DATABASE
"LOGIC

- Nel'l

R TR

- Fundamental Database Issues

T T R

Barry E. Jacobs

T S S R S N

APPLIED DATABASE
LOGIC I:

Fundamental Database Issues

Barry E. Jacobs

Senior Research Computer Scientist

National Space Science Data Center

Goddard Space Flight Center

National Aeronautics and Space Administration
Greenbelt, Maryland 20771

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data
Jacobs, Barry E., 1947
Applied database logic I.

Includes bibliographies and index.

1. Data base management. 1. Title. II. Title:
Applied database logic 1. III. Title: Applied
database logic one.

QA76.9.D3J33 1985 001.64 85-3499

ISBN 0-13-040205-2

Editorial/production supervision and
interior design: Fred Dahl
Manufacturing buyer: Gordon Osbourne

© 1985 by Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN D0-13-040205-2 D01

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

PREFACE

Data can be represented in a number of ways in a database. For example, there are the
three major methodologies: relational, hierarchical, and network. Further, even for a
particular methodology, there are different implementations from which to choose.
For instance, in the relational approach there are Oracle, Ingres, dBase II, and so on.
In the network case, although CODASYL is intended to be a standard, there are
many variations among existing CODASYL systems.

This abundance has resulted in two significant problems. First, because of the
diversity of approaches, a database professional often finds that reading the literature
requires tedious translation between terminology with which the professional is fa-
miliar and that which appears in, say, a journal article. Second, database users want-
ing to access data in a database type other than their own have to learn new rules and
operations for manipulating the data. Consequently, this has created an “it’s too much
trouble to do” attitude. As a result, a tremendous proliferation and repetition of data-
base research papers and databases has developed.

Database logic, the focal point of this book, is a proposed remedy for this situa-
tion. In very simple terms, database logic can be thought of as a uniform layer that
can be placed on top of heterogeneous databases (i.e., relational, hierarchical, and net-
work). Consequently, it can provide a uniform paradigm for communicating results of
database research. In addition, database logic can be used as a way of looking at het-
erogeneous databases so that user access is facilitated.

More precisely, database logic is to the heterogeneous cases what first-order log-
ic is to the relational approach. In this book, which presumes no previous background

xiii

Xiv Preface

in logic, we show how database logic can be used to deal with many important data-
base issues. These include

External-to-conceptual mapping

View update

View integration

Database conversion and query processing
Automatic program conversion

SN i e

External axiomatization

These issues are all seen to be related using the notion of “interpretation.”

Many of the ideas to be presented have come from our experience on the Dis-
tributed Access View Integrated Database (DAVID) project funded by National
Aeronautics and Space Administration (NASA). The objective of this project is the
development of an easy-to-use system with which people in the federal government
can uniformly access distributed heterogeneous databases. Basically, DAVID is a da-
tabase management system which is built on top of already existing database and file
management systems. The front end of the DAVID system is database logic.

This book is unique in several ways. First, it is the first text that contains a treat-
ment of all the above-mentioned issues. Second, it presents a unified approach, name-
ly, interpretations, for dealing with all these issues. Third, many of the results in this
book are new and have not yet appeared in the literature. Fourth, it presents a com-
plete treatise of the recently developed tool of database logic. Fifth, it provides a vehi-
cle through which computer science students can learn mathematical logic and discov-
er how it can be applied to important database issues.

This book is the first in a series. The main theme throughout is the demonstra-
tion of how database logic may be used as a uniform tool for addressing many impor-
tant database issues. This book deals with the fundamental issues mentioned above
and shows how the notion of interpretation can tie them all together. The second book
will deal with query processing over a set of heterogeneous distributed databases. The
third book will deal with expert systems that are built on top of databases. Other
books will deal with machine learning, transaction processing, database machine ar-
chitecture, and theoretical issues concerning database logic. Our modus operandi is
simple: We generalize database technology from the relational to the heterogeneous
case using database logic as the framework.

The development of this book and the material within would not have been pos-
sible without the help of a number of people. Alan R. Aronson, Dehe Cao, Upen S.
Chakravarthy, John Grant, Cindy Walczak, and Jack Welch have all contributed, in
many ways, to the material that is presented in this book. Milt Halem and Paul H.
Smith of NASA have provided the support, both technical and moral, for the DAVID
project which resulted in this endeavor. Michael Anshel, Phillip Bernstein, John Ber-
bert, Marco Casanova, Seymour Ginsburg, Keith Harrow, Stephen Hegner, David

Preface XV

Hsiao, Jack Minker, Ray Reiter, Ira Sack, Ed Sibley, and Moshe Vardi have provided
direction and reassurance.

There are a number of individuals who helped to test and proofread the manu-
script. These are Joseph Aulino, Kenneth Baum, Nancy Broderick, Isadore Brodsky,
Edmund D’souza, Jennifer Elgot, Hsin Fang, Liang Fang, Elizabeth Fineman, James
Finucane, Hsiao-Fang Hu, Kyu-Hyun Hwang, Adel Gharib, Diana Gordon, Kim
Haynes, George Kertz, Thomas Jacobs, Susan Mittelman, David Moraff, Karen Rob-
erts, Gompa Raghuramaih, Michael Shapiro, Duc Tran, John Waclawsky, and Karen
Weiss.

I wish to also express my deepest thanks to a number of people at Prentice-Hall
who helped me through various stages of this book. These are Lynn Frankel, Rhoda
Haas, Barb Klink, Leon Liguori, Nancy Milnamow, and Gordon Osbourne. Special
thanks also to Ira Shore of PPI Inc. who gave me a course in computer typesetting; to
Barbara Palumbo of Prentice-Hall, who taught me so much about book production;
and Fred Dahl, who coordinated the editing, production, and design of this book.

I am tremendously grateful to Karl Karlstrom at Prentice-Hall, one of the true
giants in the computer science publishing industry, for his unwavering support of this
project. I also thank Raymond Yeh at the University of Maryland for his help in initi-
ating the publication of this series. Most of all, I wish to express my gratitude to my
wife, Susan, who walked with me through every step on the oftentimes rocky and frus-
trating road to this point. I love her dearly for it.

BARRY E. JAcoBs

HOW TO
READ THIS BOOK

In this section we provide the reader with helpful suggestions for reading this text.
The way in which one goes through the material will depend on one’s background and
the topics of interest.

1. The Introduction should be read in its entirety. Its purpose is to provide the
reader with some preliminary background as well as an overall view of the material in
the book. As in all chapters in the book, doing the exercises at the end of each section
is strongly encouraged.

2. Chapters 1 and 2 should be read in their entirety. They form the foundation
for the rest of the book. Unfortunately, they will be the hardest parts to get through.
This is because the notation and concepts will probably be foreign to most readers.
The reader should spend more time on understanding the examples than in trying to
figure out the nuances of the definitions. After completing the first two chapters, the
reader will be able to proceed faster through the rest of the book.

Chapter 1 shows how database logic can be used to represent heterogeneous da-
tabases. In Section 1.1 we cover the special case in which first-order logic represents
relational databases. This section is particularly useful for readers without any back-
ground in logic. In Section 1.2 the notions of Section 1.1 are generalized to the hetero-
geneous case in database logic. In Section 1.3 the ideas of the first two sections are
illustrated by defining a data manipulation language based on database logic.

After finishing Chapter 1, the reader is not expected to be a proficient “logi-
cian.” Instead, it is expected that the reader will be comfortable with database logic
view definitions as exemplified by Figures 1.3 and 1.8. There are formal definitions of
database logic in Chapter 3. These should be looked at while reading Chapter 1 only if
the reader feels uncomfortable with the presentation.

XVii

Xviii How to Read This Book

Chapter 2 shows how the notion of “interpretation” can be used as a vehicle to
relate two different databases. In Section 2.1 we cover the special case in which both
databases are relational. In Section 2.2 we generalize the material of Section 2.1 to the
heterogeneous case. In Section 2.3 we show how programs can be converted from one
database to another.

After finishing Chapter 2, the reader should be comfortable with the interpreta-
tion definition as exemplified by Figures 2.3 and 2.11. Also, it is expected that the
reader will be familiar with the two mappings produced by the interpretation and the
“Flipper Theorem.” Again, the reader should consult the formal material in Chapter
3 only if uncomfortable with the presentation in Chapter 2.

3. Chapter 3 contains the formal definitions of database logic. Section 3.1 pre-
sents a discussion of how the important issues mentioned in the Introduction can be
framed using the concepts from Chapters 1 and 2. This section should be read in its
entirety. Sections 3.2 and 3.3 contain the formal material. The reader can skim
through them and move on in the book.

4. The reader can now choose to read any of the remaining chapters in the
book. Chapter 4 should be read before Chapter 5; otherwise, the reader can jump
around as he or she chooses. There are cases in which material occurring in one chap-
ter is referred to in other chapters. For example, logical optimization of Chapter 8 is
mentioned in Chapter 7. However, these situations do not occur too often, and when
they do, the material can still be pretty well digested.

5. The general mode of presentation in this book is that issues are first covered
for the relational case and then generalized to the heterogeneous case. If one is con-
cerned only with the relational case, then one can study only those chapters and sec-
tions pertaining to it. In all cases, proofs are provided for the heterogeneous case.
However, a relational reader can still follow the arguments simply by pretending that
only the relational case is dealt with.

B.E.J.

CONTENTS

PREFACE, xiii
HOW TO READ THIS BOOK, xvii

INTRODUCTION, 1

0.1

0.2

0.3

0.4

Databases, 1
Relational Databases, 1
Hierarchical Databases, 3
Network Databases, 4
Exercises, 4

Multidatabase Issues, 4
External-to-Conceptual Mapping, 6

View Update, 6

View Integration, 6

Database Conversion and Query Processing, 7
Automatic Program Conversion, 7

External Axiomatization, 7

Hidden Databases, 8

Exercises, 8

Logic and Databases, 9

Relational Databases in First-Order Logic, 9
Interpretations in First-Order Logic, 10
Database Logic: Views and Interpretations, 11
Exercises, 11

Related Reading, 12

vi

e

1
DATABASE LOGIC, 13

1.1 Relational Databases in First-Order Logic, 13
Example, 13
Relational Views, 16
Relational Structures, 20
Relational CALC DML, 21
Exercises, 22

1.2 Heterogeneous Databases in Database Logic, 23
Example, 23
Database Views, 25
Database Structures, 32
Exercises, 33

1.3 GCALC Data Manipulation Language, 35
Queries, 36
Insertions, 36
Deletions, 37
Updates, 39
Other DML Conversion, 40
Exercises, 42

1.4 Related Reading, 43

2
EXTERNAL-TO-CONCEPTUAL MAPPING, 45

2.1 Mappings between Relational Views, 45
Example, 45
Language Interpretations, 48
Two Mappings, 51
View Interpretations, 53
Operation Simulators, 55
Exercises, 58

2.2 Mappings between Heterogeneous Views, 59
Example, 59
Language Interpretations, 65
Cluster Interpretations, 73
Two Mappings, 77
View Interpretations, 80
Operation Simulators, 81
Exercises, 84

2.3 Automatic Program Conversion, 87
Query Conversion, 89
Update Conversion, 91

24

3

Other DML Conversions, 92
Exercises, 93

Related Reading, 93

FORMAL DATABASE LOGIC, 95

3.1

3.2

3.3

3.4

4

A Survey of Applications, 95
External-to-Conceptual Mapping, 95

View Update, 96

View Integration, 96

Database Conversion and Query Processing, 97
Automatic Program Conversion, 97

External Axiomatization, 98

Database Languages and Structures, 98
Database Schemas, 99

Database Languages and Wffs, 100

Database Structures and Truth, 102

Exercises, 104

Interpretations, 105
Interpretations of Languages, 105
Induced Database Structures, 108
Flipper Theorem, 109

Exercises, 112

Related Reading, 114

VIEW UPDATE I:
THE RELATIONAL CASE, 115

4.1

4.2

Correctness Criteria, 115
Example, 115

Operations and Simulators, 121
Weak Correctness, 125
Consistent Correctness, 126
Independent Correctness, 127
Strong Correctness, 128
Exercises, 129

Checking Simulator Correctness, 130
Some Simulators, 130

Weak Correctness, 132

Consistent Correctness, 133

Independent Correctness, 134

vii

Strong Correctness, 136
Exercises, 138

4.3 Canonical Simulators, 139
Insertion and Deletion Properties, 139
Insertions on a Projection, 143
Insertions on a Join, 144
Insertions on a Selection, 145
Deletions and Updates, 147
More Complex Simulations, 147
Exercises, 148

4.4 Related Reading, 150

5

VIEW UPDATE II:
THE HETEROGENEOUS CASE, 151

5.1 Correctness Criteria, 151
Operations and Simulators, 151
Weak Correctness, 156
Consistent Correctness, 156
Independent Correctness, 157
Strong Correctness, 157
Exercises, 158

5.2 Checking Simulator Correctness, 158
Weak Correctness, 158
Consistent Correctness, 159
Independent Correctness, 160
Strong Correctness, 161
Exercises, 163

5.3 Characterizations of Correctness Criteria, 164
Weak Correctness, 165
Consistent Correctness 166
Independent Correctness, 167
Strong Correctness, 168
Exercises, 171

5.4 Related Reading, 172

6
VIEW INTEGRATION, 173

6.1 A Relational Example, 173
Candidate Views, 173
Integration Methodology, 177
Integrating V(R1), 178

viii

Integrating V(R2), 178
Integrating V(R3), 187
Exercises, 188

6.2 The View Integration Methodology, 188
Integration Methodology, 189
Main Part, 189
Second Part, 192
Adding and Reordering Views, 193
Heterogeneous Example, 193
Exercises, 204

6.3 Consistency and Composition of Interpretations, 204
An Example of Inconsistency, 205
Sufficient Condition for Consistency, 207
Composing Interpretations, 208
Exercises, 209

6.4 Related Reading, 210

7

DATABASE CONVERSION
AND QUERY PROCESSING, 211

7.1 Relational Database Conversion, 211
Conversion Methodology, 213
Interpreting the New Database, 216
External-to-Conceptual Translation, 216
Decomposition, 217
Execution, 219
Assembly and Loading, 221
Relational Query Processing and Database Conversion, 221
Exercises, 224

7.2 Heterogeneous Database Conversion, 225
Interpreting the New Database, 225
External-to-Conceptual Translation, 230
Decomposition, 230
Execution, 232
Assembly and Loading, 235
Exercises, 236

7.3 Decomposition, 237
Decomposition Methodology, 237
A Relational Example, 237
A Heterogeneous Example, 240
Predicting Subquery Sizes, 244
Exercises, 253

7.4 Related Reading, 253

8
AUTOMATIC PROGRAM CONVERSION, 255

8.1 Relational SQL Conversion, 255
Relational SQL DML, 255
Conversion Methodology, 259
Converting to GCALC, 260
Interpreting the GCALC, 264
Optimizing the GCALC, 265
Converting to Relational SQL, 266
Exercises, 267

8.2 Heterogeneous GSQL Conversion, 267
Heterogeneous GSQL DML, 267
Conversion Methodology, 271
Converting to Calculus, 273
Interpreting the GCALC, 277
Optimizing the Calculus, 278
Converting to GSQL, 279
Alternative Approach, 280
Exercises, 281

8.3 Logical Optimization, 281
Optimization Algorithm, 281
Optimizing a Relational Query, 282
Atomic versus Cluster Interpretations, 283
Optimizing a Heterogeneous Query, 285
Exercises, 288

8.4 Related Reading, 289

9
EXTERNAL AXIOMATIZATION, 291

9.1 Relational Case, 291
Implied Constraint Problem, 291
External Axiomatization Problem, 297
Onto Interpretations, 299
Restricted External Axiomatization, 303
Exercises, 305

9.2 The Heterogeneous Case, 306
Implied Constraint Problem, 309
External Axiomatization Problem, 312
Onto Interpretations, 313
Exercises, 317

9.3 Some Theorems, 317
Implied Constraints, 317
Invertability, 318

Faithfulness, 318
Database Logic versus First-Order Logic, 320
Exercises, 324

9.4 Related Reading, 324

INDEX OF NOTATIONS, 326
INDEX, 330

Xi

INTRODUCTION

0.1 DATABASES

Roughly speaking, a database is a collection of data and operations that represents
some aspects of the real world. For example, a university database can be regarded as
representing parts of a university environment. Hence, one may regard a database as a
“model” of that part of reality in which one is interested. Consequently, when we use
a database, questions about the real world are reduced to questions about the model.

There are three major types of databases: relational, hierarchical, and network.
The differences between them are based on the way in which data in the database ap-
pear to the user. Illustrations of the three types are given below. A database manage-
ment system is a large-scale computer program that is responsible for supporting many
databases. Depending on the type of databases it maintains, a database management
system is called relational, hierarchical, or network.

Relational Databases

Relational databases are databases in which data appear to the user in one or more
separate tables. These tables, called relations, have rows that are called records. For
example, Figure 0.1 contains an instance of a relational database. The database repre-
sents student transcript information at a university. The relation TRANSCRIPT has
records that indicate the student id#, student name, semester, year, department,
course#, section#, course title, grade, and credits. The relation STUDENT has
records which have student id #, student name, and date of admission.

2 Introduction
TRANSCRIPT
STUDID | STUDNAME|SEMESTER | YEAR DEPT | coumse# | sEC# TITLE GRADE | CREDITS
SMITH
123456789 | ROBERT. | FALL 1979 | compsc 103 001 INTRO B 3
123456789 | ROBERTS. | FALL 1979 | MATH 103 001 | CALC B 3
123456789 | Somemry | FALL 1979 | ART 101 001 | INTRO B 3
SMITH
123456789 | ROBERTJ. | FALL 1978 | HIST 102 001 | AMHIST c 3
DISCR
123456789 | SomenTy. | SPRING 1980 COMPSCI 220 001 | stRucT B 3
123456789 | ROBERTJ. | SPRING 1980 MATH 104 001 cALC B 4
SMITH
123456789 | ROBERTJ. | SPRING 1980 | ECON 101 001 | INTRO c 3
SMITH
123456789 | ROBERTJ. | SPRING 1980 | ENG 105 001 | compos A 3
N
361258823 | MARYT. | SPRING 1980 MATH 104 001 | CALC A 4
JONES
361258823 | MARYT. | SPRING 1980 ECON 101 001 | INTRO c 3
JONES
361258823 | MARYT. | SPRING 1980 PHYSICS 102 001 | INTRO D 4
JONES
361258823 | MARYT. | SPRING 1980 | ENG 105 001 | compos 3
1 A P |
J\—A_/’
STUDENT
ID# NAMES | DATEADM
123456789 | SomEmTy |SEPT 21979
361258823 | MamyT | FEB 11980

Figure 0.1 Relational database.

There are also semantic properties attached to a relational database, called integ-
rity constraints. The most common type of integrity constraint is the dependency con-
straint. It is defined as a collection of fields in a record that uniquely determines other
fields in a record. For example, in the TRANSCRIPT relation, STUDID determines
STUDNAME, and DEPT and COURSE# determine TITLE and CREDITS. In
STUDENT, ID# determines NAME and DATEADM.
When a set of fields determines the rest of the fields in the row, that set is called
a key. For example, ID# is a key for STUDENT. Also, the reader can check that
STUDID, SEMESTER, YEAR, DEPT, and COURSE4 is a key for TRANSCRIPT.

