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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated:

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Foreword

The author had initiated a revision and translation of this volume prior to his
death.

Given the rapid advances in transcendence theory and diophantine ap-
proximation over recent years, one might fear that the present monograph,
which is essentially a translation of a work originally published in the then
USSR in 1982, is mostly superseded. That is not so. There is in any event
a certain amount of updating inserted by the author. However, the author’s
emphasis remains original and almost unique, and well warrants study now
that this work appears in the mathematical lingua franca* thus making it
easily accessible to the majority of mathematicians.

Most research mathematicians will be familiar with the eccentricities of
Russian style — in this case I should correct that to Byelorussian style —
in mathematical writing. There is quite an amount of repetitive detail and
little assumption about notation, exemplified by a great deal more ‘letting’ in
enunciations of lemmata and theorems than now seems customary; and the
natural logarithm remains In, just as on the engineer’s calculator. Notwith-
standing that, SprindZuk maintains a pleasant and chatty approach, full of
wise and interesting remarks. His emphases well warrant emulation.

I had the pleasure of meeting the author at several Oberwolfach meetings.
Indeed, it was his instruction ‘You will walk with me,’ that led to the one and
only time that I have allowed myself to be subjected to the post-breakfast
perambulation all the way down and then, worse, back up the drive. I was a
little surprised to find that SprindZuk’s spoken English was rather better than
I had been led to expect given his apparent reticence at tea and dinner. But
that may have been a function of the bad old days.

Nonetheless, the translation from which the present volume is derived was
just from Russian to ‘Russlish’. I am indebted, in the first instance to the late
Ross Talent who commenced TEXing and ‘translating’ the translation prior
to his death in a car accident in September 1991, and then to Sam Williams
and Dr Deryn Griffiths who assisted with preliminary typing of the remainder
of the manuscript. I owe special and extensive thanks to Dr Chris Pinner
who carefully read all that preliminary typescript and carefully annotated it
with corrections both to its TEX and to its mathematics. Incidentally, Chris
Pinner’s efforts make it clear that at least some of the detail provided must be

* I cannot resist using this phrase and irritating my French colleagues.



\'[

taken flexibly. What is presented here is entirely correct in spirit; that is, in its
principal parameters. In applying it one should, as always, rework the details
to the purpose at hand. That will be all the more so given the errors I will
inadvertently have introduced, notwithstanding all the efforts of my minders.

I have gone to some pains to translate from the Russlish to English, but
restrainedly, if only so as not to hide Sprindzuk’s style and personality. That
may mean the retention of some eccentric phrasing. I hope that I have not
done so to such an extent as to hide important meaning. However, once or
twice, I should confess, I had no idea what was intended, even after retreating
to the original Russian. So it goes.

I began by saying that much of this monograph remains fresh, interesting
and useful. The reader should notice the unusual emphases in the first seven
chapters; I am confident that there is much yet to be usefully done along the
lines there delineated. I am not aware of any other place that a reader can find
a congenial entry to the ideas of the final two chapters and am certain that
the present volume will spark a great deal of useful thought and fascinating
work.

Alfred J. van der Poorten
ceNTRe for Number Theory Research
Macquarie University
alf@mpce.mq.edu.au
Sydney, Australia
May 1993

Afterword: In mid-1993, a volume on diophantine equations seems incomplete
if it fails to allude to the surprising announcement by Andrew Wiles of his
proof of the Shimura-Taniyama-Weil conjecture for semi-stable elliptic curves,
and its spectacular consequence. As it happens, Fermat’s Last Theorem gets
barely a mention in the present volume; the one oasis is the concluding remarks
of Chapter VIIL. Thus to bring this volume up to date in this respect it suffices
just to eliminate mention of a paper of Inkeri and mine! Of course it is no
longer totally out of the question that the work on elliptic curves be extended
to prove the abc conjecture; that will warrant a rather more significant revision.

July 1993



Preface

The theory of diophantine equations has a long history, and like human culture
as a whole, has had its ups and downs. This monograph aims to show that the
last 10 to 15 years were a period of uplift, at least in the field of diophantine
equations in two integral unknowns, a part of the subject which has intrigued
and attracted researchers throughout its history.

Even a cursory acquaintance with the work preceding the papers of Runge
[166] in 1887 and Thue [229] in 1909 will impress with the dramatic search
for general laws for the behaviour of solutions of diophantine equations, and
the realisation of the peculiar difficulties of attaining this aim (see, for ex-
ample, [56], vol. 2). It was Runge who obtained the first general theorem on
the finiteness of the number of integer points on a wide variety of algebraic
curves. After nearly a century it is difficult to judge the influence of Runge’s
work on his contemporaries. Certainly it is evident in Hilbert’s proof of his
irreducibility theorem [98], which initiated research on the inverse problem of
Galois theory. It is possible that Thue was stimulated by Runge’s arguments
to investigate the representation of numbers by irreducible binary forms, a
closely related problem not covered by Runge’s theorem. However, the pecu-
liar virtue of Runge’s methods — the possibility of making them effective and
obtaining explicit bounds for the solutions — was lost in both cases.

Thue’s work initiated a most fruitful period of development of the the-
ory of diophantine equations in two unknowns — the golden age of ineffective
methods! Two monumental results of that period are widely known: Siegel
[193] proved that curves of genus greater than zero have only finitely many
integer points, and Roth [165], in the problem of representation of numbers
by irreducible binary forms (the Thue equation), obtained the best possible
exponent estimate for the unknowns in terms of the number represented. Both
results were achieved by a thorough development and enrichment of Thue’s
method, and on the way to these results many specific facts were obtained,
special methods were worked out, and phenomena arising from these two gen-
eral theorems were discovered. The monographs by Skolem [196], Lang [120],
Mabhler [136] and Mordell [145] give a good idea of the variety of the results
obtained.

One of the above-mentioned special methods is among the most beautiful
in the theory of diophantine equations: Skolem’s method. Though Skolem him-
self and his adherents achieved much by this method, and were for a long time
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the leaders in questions of number representation by norm forms in three or
more variables, the ascendancy was finally won by Thue’s method (Schmidt’s
theory of representation of numbers by norm forms is a fine testament to that
[185]). Nevertheless, the fundamental idea of Skolem’s method, the reduction
of algebraic diophantine equations to exponential equations, has shown excep-
tional vitality in recent episodes of the theory of diophantine equations.

In 1952 Gelfond [77] suggested that non-trivial effective estimates for lin-
ear forms in the logarithms of three or more algebraic numbers would make
it possible to obtain explicit bounds for the solutions of exponential diophan-
tine equations, in particular those to which Thue’s equation reduces, thereby
yielding an effective bound for the solutions of this equation. By that time
the necessary estimates were known in the case of two logarithms, but the
transition to three logarithms presented considerable difficulty and had not
been carried through. In 1966 Baker [8] obtained such estimates for forms in
logarithms of any number of algebraic numbers, and later applied them to
diophantine equations. Baker’s work had a stimulating effect on his close col-
leagues, and during the next decade the theory of diophantine equations was
enriched by results of a qualitatively new type, which will occupy a consider-
able portion of this monograph.

This book covers all the main types of diophantine equations in two un-
knowns for which the solutions are to be integers or S-integers or rationals or
algebraic numbers from a fixed field. Such a broad notion of solution domain
makes available a wider arsenal of arithmetic facts than would be possible if
only the classical case of rational integer solutions (which, of course, remains
the main case here as well) were considered. In particular, by transcending the
rational integer domain, we are able to analyse certain classes of diophantine
equations in several unknowns (for example, representations of numbers by
certain norm forms). Special attention is given to the influence of the parame-
ters of the equation on the magnitude of its solutions, and to the construction
(in principle) of best possible bounds for the solutions. Here an interesting
general phenomenon is observed which formerly revealed itself in very special
cases only: the regulator of some algebraic number field connected with the
equation has a preeminent influence on the magnitude of the equation’s solu-
tions. (In virtue of the Siegel-Brauer formula, this amounts to preeminence of
the class number.) We use this phenomenon to describe parametric construc-
tion of algebraic number fields with large class number. Further work in this
direction may lead to major improvements to known bounds for solutions of
diophantine equations in terms of the height of the equation, or to a proof
that such an improvement is impossible (which seems more probable). Not
all results concerning the value of class numbers are directly connected with
the theory of linear forms in logarithms of algebraic numbers, but they were
inspired by the above-mentioned relationship between class numbers and the
value of solutions of diophantine equations. Chapter IX is altogether indepen-
dent of the theory of logarithms.

The theory of algebraic units, the theory of ideals in algebraic number
fields, and the concepts and techniques of p-adic analysis in both arithmetic



IX

and analytic form predominate in this monograph. The informed reader will
notice that p-adic analysis makes some quite unexpected appearences. Many
of the results can be obtained without the use of p-adic analysis, but there
are some which cannot even be formulated without reference to p-adic metrics
(See Chap. IX).

There is also another approach to the investigation of integer points on
algebraic curves which uses parametrisation of curves and the Mordell-Weil
theorem on the group of rational points on the curve. We do not touch upon
this approach, because the main results obtained in this way are still ineffec-
tive. Besides, this topic is treated in a recent monograph by Lang [124].

I have often seen the admiration felt for modern diophantine analysis by
older mathematicians who have worked in number theory or taken an interest
in its development; for what is done now was in their youth just a pleasant
dream. Younger mathematicians will take its achievements for granted, and
will feel that its deficiencies should be criticised. If this monograph should
stimulate them to creative work or offer clues to new discoveries, its aims will
be more than fulfilled.

As this work was nearing completion, it became clear that for many readers
it will make an impression much as the one tourists in Paris feel on seeing the
Pompidou Centre: all the main lines, informative and logical, are extremely
plain and to the fore. It is, of course, easier to construct a building or write a
book in the ‘good old style’, but then inevitably a great deal will be hidden
for the sake of a favourable external impression. Extreme frankness, whether
in art or science, imposes much more on our time.

Central themes of this monograph were the subject of my lectures at the
Institut Henri Poincaré (Paris, May-June 1980) by invitation of the Univer-
sité de Paris VI. Namely, (1) generalisations and effective improvements to
Liouville’s inequality, (2) a connection between bounds for the solutions of
diophantine equations and class numbers, and also the manner in which the
class number varies, (3) effective versions of Hilbert’s irreducibility theorem
and rational points on algebraic curves. The audience’s interest in and atten-
tion to these topics helped to finalise their presentation in this monograph.
Michel Waldschmidt and Daniel Bertrand contributed most of all. I am obliged
to Alan Baker for the exceptional stimulus which his works gave me in the
late sixties, and to Andrzej Schinzel for information given to me during pre-
vious investigations of Hilbert’s theorem. I am heartily grateful to all the
above-mentioned persons.

Minsk V. Sprindzuk
September 1980



Notation

The following notation, mainly standard, is frequently used.

Dx

Ry

hk

N(a)
Nm(a)
Nmy, /k (a)
h(a)

lal

deg a
ordp a

c(n),c(n,e)...

Inz

la)

the field of rational numbers

the field of complex numbers

the field of all algebraic numbers

algebraic number fields of finite degree over Q

the degree of the field L

the degree of L over K

the ring of rational integers

the ring of integers of K

the field of rational functions in z,y, ... over K

the ring of polynomials in z,y,... over K

the group of units of the field K

the discriminant of K

the regulator of K

the number of ideal classes of K

the absolute norm of an ideal a

the absolute norm of an algebraic number «

the absolute norm from L to K of an algebraic number «
the height of an algebraic number a

the size of an algebraic number (the maximum modulus
of the conjugates of a)

the degree of an algebraic number o

the exponent of the power to which a prime ideal p divides
@

the p-adic metric, normalised so that |p|, = p
the field of p-adic numbers

the ring of p-adic integers

the algebraic closure of Q,

the completion in | |, of an algebraic closure of Q,

the height of a polynomial F

the degree of a polynomial F

the degree of a polynomial F with respect to z

the discriminant of a polynomial F

the resultant of polynomials F' and G

the resultant of polynomials F' and G with respect to z
positive quantities depending only on the indicated pa-
rameters

the ‘natural logarithm’ of z, the logarithm to base e

the integer part of a real number a.

=3
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I. Origins

This chapter reviews the origin and development of the fundamental principles
of the contemporary analysis of diophantine equations, from the perspective
of the theory of diophantine approximation.

1. Runge’s Theorem

Let F(z,y) be an integral polynomial irreducible in Q[z,y]. We suppose as
we may without loss of generality that its degree in y is at least its degree in
r and set deg, F(z,y) = n > 2. We consider solutions in integers z, y of the
equation

F(z,y) = 0. (1.1)

Although Fermat and Euler had analysed special equations of this form (for
example, z2 — Dy? = 1 with squere-free D), results of a more or less gen-
eral nature were for a long time elusive. In 1887 Runge devised the general
approach whose essence is described below (see also [145], p.262).

Equation (1.1) determines an algebraic function y(z) which takes integral
values at integer solutions of the equation. Suppose there are infinitely many
solutions. One can find y(z) numerically for sufficiently large z by expansion
in a power series about the point at infinity.

Let

F(z,y) = fa(2,y) + fa-1(z,9) + ... + fo(z,y)
where f;(z,%) is a binary form of degree j. Put £ = t~! and y = st™1, and
write
G(t,s) =t"F(t !, st7!) =
=t"fut st )+t t" 7 st .
= gn(s) + gn—1(s)t + -~
where gn(s), gn—-1(8), ... are polynomials in s. Suppose that gn(s) = fn(1,s)

has no multiple roots. The equation G(t,s) = 0 following from (1.1) defines n
power series expansions

s=a+aot+a1t2+... 3



2 I. Origins

one for each root o of the polynomial g.(s), the numbers a; being in the field
K = Q(a). Consequently we have n expansions

y=az+ao+auz +... (1.2)

corresponding to the roots a of gn(s).

Let ¢(z) denote one of the n power series (1.2). The principal idea of
Runge consists in a choice of integral polynomials A;(z), (0 <% < n—1) of
degree not exceeding some bound h, such that a power series expansion of the

function
n—1

B(z) = ) Ai(z)¢' ()
1=0
about the point at infinity has only negative powers of z:

&(z) =Pz~ + oz 2 + ... (1.3)

When can this be done? Writing &(z) in the form

o(z)= Y Bz,

j=—h—-n+1

observe that each f; is a linear form in the unknown integer coefficients of the
polynomials Ag(z),. .., An—1(z). We will have (1.3) when

B;j =0 (J=-h-n+1,-h—mn,...,0). (1.4)

Each f; lies in K, and may therefore be represented by its coordinates with
respect to a basis of K as a Q-vector space. Then the system of equations
(1.4) becomes a system of d(h+n) linear homogeneous equations with rational
coefficients, where d = degK, in the n(h + 1) unknown integer coefficients of
the polynomials Ag(z),...,An—1(z). Provided n(h + 1) > d(h + n) we can
guarantee the existence of a non-zero set of integers satisfying the system. If
d = n this cannot be done, but for d < n it suffices to take h = n? —n + 1.
Thus we can find a non-zero set of integral polynomials of degree not exceeding
n? —n+ 1 for which (1.3) will hold, provided that the polynomial f,(1,s) is
reducible in Q[s].

We now substitute in (1.3) the integer values of z for which there exists
an integer y satisfying (1.1) and (1.2). For such z, y, with |z| sufficiently large,
we obtain

n—1

> Ai@)yt =0, (1.5)

i=0
since it follows from (1.3) that |®(z)] < 1 for sufficiently large |z|, and so
&(z), being a rational integer, is zero. We have obtained an equation (1.5)
which is independent of (1.1). The polynomial F(z,y) is irreducible in Q[z, y]
and its degree with respect to y is n, while the left hand side of (1.5) has
degree in y not exceeding n — 1. Writing the resultant of these polynomials
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with respect to y, we obtain an equation only for z, which completes the proof
of the finiteness of the number of solutions to (1.1) under the assumption that
the polynomial f,(1,y) is reducible.

Clearly the above argument is effective, and may be used in concrete cases
to determine all solutions of (1.1). Its further development yields very strong
bounds on the solutions (such as a power of the height of F(z,y)).

Certainly the requirement that f.(1,y) be reducible is a serious restriction.
Even the case F(z,y) = fa(z,y) + fo(z,y), with f, irreducible, is of interest,
being the problem of representation of numbers by irreducible binary forms.
For n = 2 the finiteness or otherwise of the number of solutions is easily
resolved, but even for n = 3 significant difficulties arise. The general case was
solved by Thue, using a method which has influenced the development of the
whole of this branch of number theory.

2. Liouville’s Inequality; the Theorem and Method of
Thue

In 1844 Liouville [128] observed that algebraic numbers do not admit ‘very
strong’ approximation by rational numbers, and was thereby able to give the
first construction of transcendental numbers. Since then the approximation
estimate he obtained has been so frequently and widely applied that it has
acquired a proper name: Liouville’s Inequality.

Let  be a real algebraic number of degree n > 2 and let p, ¢ be integers.
Then Liouville’s inequality is

| —p/ql > 197", (2.1)

where ¢; = c¢j(a) > 0 is a value depending explicitly on a. The proof is
immediate from the upper bound for the absolute value of Nm(ag— p) and the
observation that it is a non-zero rational number with denominator dividing
a™, where a is an integer such that ac is an algebraic integer. For n = 2 it
is impossible to improve on (2.1) by replacing c¢; by some positive function
A(q) increasing monotonically to infinity, for it is known from the theory of
continued fractions that, for any quadratic irrational a, the reverse of (2.1)
has infinitely many solutions in integers p,q when ¢, is replaced by v/5 (see
[40], Ch. II). For n > 3,however, a sharpening of the (2.1) of the type

la—p/al > Mq)/q",  Ag) T oo (2.2)

is of great interest for the study of diophantine equations.

Indeed, let f(z,y) be an integral irreducible binary form of degree n >
3, and suppose that A # 0 is an integer. If the inequality (2.1) admits a
sharpening of the form (2.2) for some A(q), then the diophantine equation

f(zay) =A (23)
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has only finitely many solutions.

If f(z,1) is a polynomial without real roots, it is obvious that (2.3) has
only a finite number of solutions. Suppose instead that « is a real root of
f(z,1) and of?,i = 1,2,...n its conjugates. It follows from (2.3) and y # 0
that

[11a® —=z/yl = A/(lallyl™) (2.4)
i=1

where a is the leading coefficient of the polynomial f(z,1). Assuming the
equation (2.3) has integer solutions with arbitrarily large |y| we see that the
product on the left of (2.4) takes arbitrarily small values for solutions z,y of
(2.3). As all the o(¥) are different, z/y must be correspondingly close to one
of the real numbers o, say c.
Thus we obtain
lo—z/yl < ca/lyl"

where ¢, depends only on g, n, and [],; lat) — al)|~1A (see Ch. IV, §1).
Comparison of this inequality with (2.2) shows that |y| cannot be arbitrarily
large, and so the number of solutions of (2.3) is finite.

It is not difficult to see that the arguments are effective, and that an ex-
plicit bound can be constructed for solutions of (2.3) once an effective inequal-
ity (2.2) is known. The sharpening of the Liouville inequality (2.1), however,
especially in effective form, proved to be very difficult.

In 1909 Thue published a proof [229] that

la —p/g| < g F717E (2.5)

has only finitely many solutions in integers p,q > 0 for all algebraic numbers
o of degree n > 3 and any € > 0. In essence, he obtained the inequality (2.2)
with A(q) of the form c3q™~ 1%, where c3 > 0 depends on « and €. But Thue’s
arguments do not allow one to find a bound for the greatest ¢ satisfying (2.5),
so it is impossible to exhibit the dependence of c3 on @ and €, and so the
bound for the number of solutions to (2.3) cannot be given in explicit form
either: it is ineffective.

We shall show that the inequality (2.5) has just finitely many solutions
following the arguments of Thue himself (see also [51]). Obviously, one may
suppose that (p,q) = 1 in (2.5) and that o is an algebraic integer. Suppose
that h > 0 is an integer, § satisfies 0 < § < 1, and

m=|3(n—2)(1+6)h|. (2.6)

For each h we will construct auxiliary polynomials P(z), Q(z) of minimal
degree and height such that P(z) — aQ(z) is divisible by (z — «)”. In more
detail, put

P(z) — aQ(z) = (z — )" {Ro+ Ri(z)a+ ...+ Raci(z)a™ 1} (2.7)

where the integral polynomials Ry(z),...,R,—1(z) are chosen so that their
degrees do not exceed m and not all of them are zero. Then we have n(m+ 1)



