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|. General Considerations
1. INTRODUCTION

The elastic properties of solid matter hold interest for both technology
and basic research. In the first field applied elasticity is an important
discipline for those fundamental considerations of engineering design
which are usually included under the designation “strength of materials.”
The treatment of structural materials requires semiempirical methods,
because their compositions are complex and prior treatment has a pro-
nounced effect. On the other hand, basic research into elastic properties is
usually concerned with work on specimens in the simplest state which
can be obtained reproducibly, e.g., annealed single crystals. The com-
plete tabulation of elastic constants for such specimens is valuable, not
only for itself, but also because the data can be correlated with other
physical measurements and thereby provide possible insight into the
nature of the atomic forces in solid matter.

The research aspect of elastic studies will be of primary interest for
this review. In general, consideration will be limited to inorganic,
crystalline materials. For the most part, interest has been focused on
the properties of single crystals. Even with these limitations, the amount
of material to be covered is very large. To maintain a reasonable length
and enhance readability, the detailed analysis has been restricted.
Bulky expressions for the transformation of coordinates and similar rela-
tions have been curtailed. The character of the tables has been designed
to be more representative than comprehensive.

A brief description of the various parts of the article follows. Part I
deals with general considerations. Here the formalism of elasticity and the
associated definitions appear. The stresses, strains and elastic constants
are introduced in the notation of Voigt and Love. The alternative repre-
sentation of the tensor notation is also stressed. The simplifications which
result from the various erystal symmetries and from isotropy are then
pointed out. The current theoretical approaches to elastic constants are
considered from two different points of attack, one based on a generalized
force model as propounded by Born and co-workers, and the other based
on attempts to evaluate elastic constants directly from the fundamental
considerations of quantum mechanies. The first approach offers a con-
venient opportunity to discuss the Cauchy relations and the conditions
for their validity. The question of whether local rotations and torques
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should appear in the elastic matrix is also considered at length in this
section. Brief mention is made of tensor properties other than the elastic
constants which may enter in the complete formulation of the thermo-
dynamic potentials of various materials. The third-order elastic constants
receive special consideration. The final section of Part I deals with the
interrelationship of the elastic constants and other physical quantities.

Part II treats methods of measurement and is necessarily cursory
rather than complete. The various techniques are indentified and de-
scribed briefly with concern for general principles only.

In Part 11T representative elastic data are presented for various pure
substances, organized into tables according to crystal symmetry. An
effort has been made to keep the tables concise even at the cost of some
arbitrariness in the selection of material. For example where two or more
experimenters are in reasonable accord only one set of data is given. Also
the tables include for the most part only the results for the elements and
reasonably well-known compounds. For a more comprehensive compila-
tion of elastic data the reader is referred to two excellent review articles
by R. F. 8. Hearmon.!

The various sections of Part III treat with different types of materials
—_their elastic properties, and particularly the theoretical interpretation
of these properties in terms of basic atomic models. In the last section of
Part III a brief account is included of results for polycrystalline materials,
particularly some which have not yet been studied in single crystal form.
The problem of predicting the elastic properties of polycrystalline aggre-
gates from the elastic constants of single crystals is also discussed.

In Part IV the dependence of the elastic constants on temperature and
pressure is presented for a variety of materials. The theory of the thermal
variation of the elastic constants is developed from the standpoint of
the idealized equation of state. Particular application is made to a central
force model for the alkali halides.

Many factors which influence elastic behavior are not treated in an
idealized equation of state. In Part V the presence of unwanted impurities,
intentional alloying, phase transitions, dislocation motion, and radiation
damage are considered for their effects on the elastic parameters. The
action of each of them involves to a greater or less degree the relaxation of
some element. A short section on relaxation phenomena serves as an
introduction to Part V. In the final sections two particular low-tempera-
ture effects are discussed, one associated with the superconducting transi-
tion and the other with electron damping.
1R, F. S. Hearmon, Revs. Modern Phys. 18, 409 (1946), and R. F. S. Hearmon,

Advances in Phys. b, 323 (1956); referred to hereafter as Hearmon I and Hearmon II,
respectively.
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2. STRESSES AND STRAINS

The formal concepts of elasticity theory will next be introduced. In
the unstrained medium one may establish a Cartesian coordinate system
with coordinates z;, x3, and ;. If the material is homogeneously stressed,
then every volume element is subject to a force acting at the bounding
surface. Let the force acting on the element of surface AA4; (perpendicular

d P(x)

Xe

X, X, X

A. B.

Fic. 1. Elastic displacement in medium. A. Coordinate system fixed in space.
B. Coordinate system fixed in medium.

to the j axis) have components AF;. The tensor T';; is then defined as the
limit approached by the ratio of AF; to AA; as AA; goes to zero,

’ P Thm SIS,
T ad—0 A4

@2.1)

The symmetric part of T'; is the stress tensor, whereas the antisymmetric
part is the density of the resultant torque. The latter is generally neg-
lected by elastic theory. According to the usual sign convention the nor-
mal stresses, or T, are tensions when positive. The T';;, for 7 ¢ j, are the
shear stresses.

When the material is strained, each point moves to a new position. For
a general point with initial position vector r, the position vector r’ after
deformation is given by

r=r+d (2:2)
where d is the vector displacement, having components u, », w (see Fig.

1A). The explicit dependence of d on the original z; is apparent. From
derivatives of its components (u, v, w) with respect to the z; coordinates
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(z, y, 2) one defines the strains in the traditional manner:?

TR P ")
1 = (')x’ 22 — ay; 33 — az; \ (2 3)
ou , ow, du , o ’

o | dw
623—6—z+@, 613_£+6—x’ 612—@4’%-

The e; are the normal strains and are positive when the medium is
extended. The dilation, or fractional change in volume, is given by their
sum,

_ AV

b 7 = e + €22 + ess. (2-4)

The nondiagonal components of e; for which 7 is not equal to j,
are the shear strains. If the medium is homogeneously strained, it is

Fic. 2. Transformation of shear strain to normal axes. Rotation of axes by 45°
makes shear strain in A appear as compression and expansion along the new axes in B.

possible to establish a new, non-Cartesian coordinate system in which
the points of the strained medium retain their old coordinates in their
new locations (see Fig. 1B). Small changes in angles between the new axes
(which were formerly 90° in the Cartesian system) are given by the non-
diagonal e;;. Tt is of interest to observe that, if a single shear strain
e; = e is present, a rotation of 45° of the ¢, j axes in their common plane
changes the form of the strain into an extension 4e along one of the trans-
formed axes and a compression ¥e along the other (see Fig. 2). We shall
have occasion to make use of this relation later in discussing the condition

for isotropy.
2 A. E. H. Love, ‘“‘Mathematical Theory of Elasticity,” p. 38. Dover, New York, 1944.
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We have seen that the descriptions of both stress and strain involve
six quantities identifiable by a double subscript notation. Both quantities
are symmetric with respect to an interchange of the subscripts.
It will be convenient in many situations to abbreviate the double sub-
script notation to a single subscript, running from 1 to 6, according to
the following scheme:

11—1,22—2,33— 3,23 > 4,13 — 5, and 12 — 6.

For example, e3; = e; and T3 = T.

A complete description of the displacement vector requires also the
specification of the three components of infinitesimal rotation, wi;. The
wi; constitute an axial vector which is the antisymmetric part of the
du;/dz; tensor. The complete expression for the variation of the displace-
ment with position can accordingly be written:

du; = %z {(eiidij + €;) + 2wi}dx;. (2.5)

&

The function representing the stored elastic energy occupies a funda-
mental position in the theory of the elastic constants. Its existence was
first postulated by Green and was later firmly established by Lord
Kelvin.? Let us introduce a Cartesian coordinate system x; in a volume V,
which is initially stress-free. After a displacement with components u;
has occurred, one can write the First Law of Thermodynamics for the
volume V under stress in the form

8U = 5Q + [ Fy- dupdV + [ .- sudS
6Q + / z Fl-éu,-pdV -+ [ z TijéuidS,- (26)
i i

where 8U and 8Q are respectively the change in internal energy and the
heat flow accompanying the displacement du. The second and third terms
on the right-hand side give respectively the work done by the body forces
per unit mass, F» (having components F;), and that done by the surface
forces, F, which give rise to the stresses T};.

For an adiabatic process 6@ = 0. An application of Green’s theorem to
the surface integral leads to the relation

sU = / 2 <F1.p - z ‘_987:;”) 51l¢dV L / E 7‘,‘1' @;1) adV. (27)
1 J ’ i d

3““Mathematical and Physical Papers by Sir William Thomson,” Vol. 1, p. 291.
Cambridge, 1882. The treatment shown here is taken from pp. 92-99 in ref. 2.
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The first term on the right gives the work done by the unbalanced force
on the center of mass of the volume V, or the change in kinetic energy of
the system. If one regards 8U as the sum of the change in kinetic energy
and the strain energy W stored by elastic deformation during the dis-
placement éu and takes d(du;)/dz; from (2.5), one obtains

W =4 f E Tolbes(1 + 8.) + 2wildV. 2.8)
i

If there is no torque density in V, then the part involving the w’s vanishes
from symmetry. We may introduce a stored energy density function w

fw = 2 T,;,-Beij. (29)

127

Since dw is a perfect differential, it follows that

Jw

Tl =2
4 aeﬁ

(2.10)

A similar result is also valid for an isothermal process, although 6Q
does not vanish in this case. By an application of the Second Law of
Thermodynamics 3Q can be shown to be a state function, i.e., independent
of the isothermal process by which the final state is attained. For the
isothermal case §W is a state function and is equal to §U minus the sum of
8Q and the change in kinetic energy. The properties of sw follow as before.

3. Tt MopuLl oF ELASTICITY AND COMPLIANCE

a. Traditional Elasticity

The usual starting point for elasticity theory is the postulation of
Hooke’s law, which states that stress is proportional to strain for suf-
ficiently small strains. Its generalized statement for an anisotropic
medium may be taken as

6
T,‘ == C;i€5. (31)

The constants of proportionality introduced hereby (c;) are called the
elastic constants, stiffness constants, or the moduli of elasticity. The set
of linear, homogenous, independent equations represented by (3.1) can
be solved for the ¢’s in terms of the T’s and leads to the relations

6

€ = z SijTj. (3.2)

i=1
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The components of the inverse matrix s; are called the moduli of com-
pliance. The ¢’s have the dimensions of force per unit area, or energy per
unit volume, and will be expressed throughout this paper in units of
10!! dynes/em? The s; have reciprocal dimensions and will be given in
units of 1012 ¢cm?/dyne.

It would appear that the 6 by 6 array of constants of either type
would contain 36 independent quantities in the most general case. This
number is, however, reduced to 21 by the requirement that the matrices
be symmetric on interchange of the double indices. This condition follows
from the existence of the strain-energy density w. The symmetry of the
¢; with respeet to interchange of the subscripts is proved by applying the
conditions of compatibility, Eq. (2.10) and Eq. (3.1):

_oTy 9w _ 3w _ a7y

T Be;  Oede;  dede;  der G- e

Cij

Moreover the assumption of linearity between stress and strain allows
(2.9) to be integrated directly giving

w = % z Tijeij. (3.4)

i1

The number of independent elastic constants will be further reduced
by the symmetry operations of the respective crystal classes. For example
there are only 9 independent constants for the orthorhombic classes, 5
for the hexagonal classes, and 3 for the cubic classes (see Fig. 5 de-
scribed in Section 5). In all but the triclinic classes the effect of crystal
symmetry is revealed by the presence of zeros and repeated elements
among the matrix components. To investigate the effect of a particular
symmetry operation on the elastic matrix one develops expressions for
the strains in a transformed coordinate system obtained from the original
by the symmetry operation. The expression for the elastic energy w
(3.4) in terms of the transformed strains is then equated identically to
the original w. The resulting equations between the coefficients of cor-
responding strain products give the relations which reduce the number of
independent elastic constants. As an example of how such relations are
derived, we consider a plane which is known to be elastically isotropic and
develop the expression for the strain energy density arising from a pure
shear strain in this plane, say e;» = e. We equate this expression for w to
that obtained from a comparable strain rotated through 45°. It has been
pointed out earlier that the comparable strain consists of a compression
—e/2 along one axis and an expansion 4-e/2 along the other. As a result
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we obtain
w(e) = eese? = ¥(cn — 2¢12 + ca2)e?/4
or ces = 3(c11 — c12). (3.5)

This relation between the elastic constants is typical of isotropic con-
ditions. For example, inspection of the hexagonal classes in Fig. 5
shows that ces is replaced by %(ci1 — ci12)—a consequence of the elastic
isotropy in the basal plane. For the isotropic medium there are only two
independent elastic moduli as one can show by requiring that the con-
stants for cubic symmetry satisfy the condition of (3.5).

The case of the isotropic medium is important both for the chrono-
logical development of the subject of elasticity and also for its applica-
bility to polycrystals and glasses. At this point we digress briefly to define
the terms which appear most frequently in its description.

The Lamé constants, A and g, are the pair most usually chosen to
appear in the matrix of the elastic moduli. The shear constant u replaces
cas, Cs5, and ces while the other X replaces cis, c25, and ci3 to give the
following matrix:

AN+ 2p A A 0 0 0
A N+ 2u A 0 0 0
A A A+ 2u 0 0 0
0 0 0 i 0 0
0 0 0 0 © 0
0 0 0 0 0 ©

Equation (3.5) has been used to obtain the quantity (A + 2u) which
replaces c1, ete.

Another important constant is Young’s modulus which is defined as
the ratio of the uniaxial stress exerted on a thin rod to the resulting nor-
mal strain in the same direction. Since all other stresses vanish, the equa-
tions for the strains are:

T = (A4 2u)er + Aez + Aes
0 = Xe:w + (7\ + 2u)es + Aes
0 = Xer + Nes + (A + 2u)es. (3.6)

It is apparent that es = e; and that

A

20+ W e

g = —62/61 =

Here the quantity o is called Poisson’s ratio and is defined as the negative
of the ratio of the strains perpendicular and parallel to the uniaxial stress
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on a thin rod. The expression for the Young’s modulus can now be written
E = up 4+ 3N)/(A + ). (3.8)

The bulk modulus B is defined for materials under hydrostatic pres-
sure as the ratio of the applied pressure to the negative dilatation. For
the isotropic case one obtains

B = V-:;T[; — 3\ + 2u)/3. (3.9)

For anisotropic materials the normal strains may not all be equal even
under hydrostatic loading. The reciprocal of the bulk modulus is called
the compressibility and will be denoted by 8.

Although these quantities have been introduced primarily with refer-
ence to isotropic materials, they appear in the literature in more general
connections. For example one finds frequent use of such symbols as Ein
meaning the ratio of stress to parallel strain for a uniaxially thin rod
oriented in the [111] direction. Similarly a quantity o2 is frequently used
to denote the ratio of the strains along two orthogonal axes 1 and 2 when
the specimen is loaded uniaxially along the 1 axis. Similarly the quantity g;
is used to denote the ratio of the strain along the 7th axis to the hydrostatic
pressure.

b. Tensor Notation and Equations of Motion

The conventional formulation of classical elasticity suffers from the
disadvantage that the strains are not presented in tensor form. As a
result any transformation of coordinates requires an involved treatment.
An alternate formulation which utilizes the conciseness and economy of
the tensor presentation has been developed by Sokolnikoff and others.*
Their alternate expression for the strains is:

_ 1 aui au,-
g (5?] + ax‘_). (3.10)

The e; so defined show their tensor properties in the manner of their
transformation under a change of coordinates. Contravariant tensors of
the first order transform like Cartesian coordinates

= ofzi (3.11)
where aff = (3%!/927). The use of repeated indices (j in this case) indi-

41, S. Sokolnikoff, ““ Mathematical Theory of Elasticity.”” McGraw-Hill, New York,
1946; W. A. Wooster, ‘“Crystal Physics.”” Cambridge Univ. Press, London and
New York, 1938; also J. F. Nye, “Physical Properties of Crystals.”’ Clarendon Press,
Oxford, 1957,
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cates summation according to the tensor convention. For general coor-
dinate transformations the distinction between upper (contravariant) and
Jower (covariant) indices must be preserved. The distinction can be dis-
pensed with, however, when the transformation involves only Cartesian
coordinate systems under infinitesimal distortion, as is the case in linear
elasticity. With this simplification the transformation of the strain tensor
has the general form

& = Qukoyi€w. (3.12)

It is noteworthy that the same expression (3.10) defines the e; whether
i =j or i # j, as contrasted to the case for the e; (2.3). The relations
between the new e; and the original ¢;; are obviously e; = e;; and &; = %ei;
for ¢ # j.

To express Hooke’s law in tensor notation it is necessary to treat the
elastic moduli as the components of a tensor of fourth order,

Tij = cijment. (3.13)
The transformation law for such a tensor is for the case of simple rotation
éijkl = CrstoXirOljsOltQiy. (3.14:)

This expression which represents quite an involved relation provides
much the simplest method for determining the components of the ¢’s in
a new coordinate system. Comparing Eqgs. (3.1) and (3.13) with the aid
of (3.10) shows that

Cijkl = Cuy (3.15)

where the double indices ¢, j, and k, I have been contracted to u and v
respectively in accordance with the convention previously introduced.
Although it might appear a priori that the tensor ¢ would possess 81
independent components, Eq. (3.15) shows that the number cannot be
more than 21. This reduction is a consequence of the fact that the tensor is
symmetrical with respect to the interchange of 4 and 7, k and [, and 7j
and kl.

By solving (3.13) for the e; in terms of the T one finds in the inverse
matrix tensor formulation for the elastic compliances,

€; = Sijk[Tkl. (316)

The ensuing relationship between the tensor compliances and the tra-
ditional s, is more complicated than the analogous (3.15). Again from
(3.10) one can show

Sijil = Suy, if uw and v are both 3 or less
Sijkl = ¥Suy, if either (but not both) u or v is greater than 3
and s = +5u, if both u and v are greater than 3. 3.17)
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In the equations of motion for an elastic medium, the forces on an
element of volume, are given by the divergence of the stress field,

Ou; 9Ty 8 | 1(ow , du
pa—tz— = axj = a_:lTJ {Cukl 2 (axl + a—xk)} (3'18)

wiiere p is the mass density. For the particular case of an elastic plane
wave one can take ux = Ay exp i(wt — k - X) where the Ay are the ampli-
tude of the vibration components, w is the angular frequency and k
is the wave-number vector corresponding to the wavelength X = 2r/[k|.
The resulting equations of motion, which are called the Christoffel
equations, follow:

psz" = c'imjﬂAjkmkn- (319)

In this form the equations constitute the basis for the “long wave”
method that Born used to develop the elastic constants from a lattice
theory (see Section 4). For applications to actual situations in which
elastic constants are determined from plane wave propagation (see Sec-
tion 8) it is usually preferable to transform to a coordinate system in
which the direction of propagation is one of the axes, say z1. In this situa-
tion all terms in (3.19) which involve differentiation with respect to
coordinates other than that along the propagation direction then drop
out. The result is

pva,‘ = C'uﬂA,‘ (320)

where ¢;;/ are the elastic constants in the transformed coordinate system
and » is the velocity of propagation. The values for » are obtained from
the secular determinant of (3.20) which must vanish in order that the A4;
have non-zero values.

¢. The Definition and Meaning of the Elastic Constants

Before proceeding further we should examine critically the concept
of the elastic constants. This concept was introduced on an empirical
basis in the formulation of Hooke’s law (3.1). A more fundamental sig-
nificance to the elastic constants, however, is implied by their appearance
as the second derivatives of w, the elastic energy density, with respect to
the strains (3.3). Putting aside the somewhat simplified groundwork of
familiar concepts used so far, we are faced with questions concerning the
existence and nature of w itself. It should first be pointed out that the
stored elastic energy is properly only a part of the complete thermo-
dynamic potential ¢ of the crystal. In general ¢ depends on many other
variables, such as the electric polarization, the magnetization, and the
temperature and contains cross-product terms involving piezoelectric,



