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PREFACE

During the past two decades a rapid growth of interest in the motion
of compressible fluids has accompanied developments in high-speed
flight, jet engines, rockets, ballistics, combustion, gas turbines, ram jets
and other novel propulsive mechanisms, heat transfer at high speeds,
and blast-wave phenomena. My purpose in writing this book is to make
available to students, engineers, and applied physicists a work on com-
pressible fluid motion which would be suitable as an introductory text
in the subject as well as a reference work for some of its more advanced
phases. The choice of subject matter has not been dictated by any
particular field of engineering, but rather includes topics of interest to
aeronautical engineers, mechanical engineers, chemical engineers, ap-
plied mechanicians, and applied physicists.

In selecting material from the vast literature of the field the basic
objective has been to make the book of practical value for engineering
purposes. To achieve this aim, I have followed the philosophy that the
most practical approach to the subject of compressible fluid mechanics
is one which combines theoretical analysis, clear physical reasoning, and
empirical results, each leaning on the other for mutual support and ad-
vancement, and the whole being greater than the sum of the parts.

The analytical developments of this book comprise two types of treat-
ments: those leading to design methods and those leading to exemplary
methods. The design methods are direct and rapid, and easily applied
to a variety of problems. Therefore, they are suited for use in the engi-
neering office. The discussions of these design methods are detailed and
illustrative examples are often given. The exemplary methods, on the
other hand, comprise those theoretical analyses which are time consum-
ing, which generally require mathematical invention, and which are not
easily applied to a variety of problems. Such methods are primarily of
value for yielding detailed answers to a small number of typical prob-
lems. Although they are not in themselves suitable for the engineering
office, the examples which they permit to be worked out often provide
important information about the behavior of fluids in typical situations.
Thus they serve as guides to the designer in solving the many complex
problems where even the so-called design methods are not sufficient.
The treatment of exemplary methods in this book usually consists of a
brief outline of the method, together with a presentation of those results
obtained by the method which illuminate significant questions concern-
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vi PREFACE

ing fluid motion and which help to form the vital “feel” so desired by
designers.

In keeping with the spirit of the several foregoing remarks, all
the important results of the book have been reduced to the form
of convenient charts and tables. Unless otherwise specified, the
charts and tables are for a perfect gas with a ratio of specific heats (k)
of 1.4.

In those parts of the book dealing with fundamentals, emphasis is
placed on the introduction of new concepts in an unambiguous manner,
on securing a clear physical understanding before the undertaking of an
analysis, on the rigorous application of physical laws, and on showing
fruitful avenues of approach in analytical thinking. The remaining part
of the work proceeds at a more rapid pace befitting the technical ma-
turity of advanced students and professionals.

The work is organized in eight parts. Part I sets forth the basic con-
cepts and principles of fluid dynamics and thermodynamics from which
the remainder of the book proceeds and also introduces some funda-
mental concepts peculiar to compressible flows. In Part II is a discus-
sion of problems accessible by the most simple picture of fluid motion
—the one-dimensional analysis. Part III constitutes a summary of the
basic ideas and concepts necessary for the succeeding chapters on two-
and three-dimensional flow. Parts IV, V, and VI then present in order
comprehensive surveys of subsonic flows, of supersonic flows (including
hypersonic flow), and of mixed subsonic-supersonic flows. In Part VII
is an exposition of unsteady one-dimensional flows. Part VIII is an
examination of the viscous and heat conduction effects in laminar and
turbulent boundary layers, and of the interaction between shock waves
and boundary layers. For those readers not already familiar with it,
the mathematical theory of characteristic curves is briefly developed in
Appendix A. Appendix B is a collection of tables which facilitate the
numerical solution of problems.

The “References and Selected Bibliography’’ at the end of each chap-
ter will, it is hoped, be a helpful guide for further study of the volumi-
nous subject. Apart from specific references cited in each chapter, the
lists include general references appropriate to the subject matter of each
chapter. The choice of references has been based primarily on clarity,
on completeness, and on the desirability of an English text, rather than
on historical priority.

My first acknowledgment is to Professor Joseph H. Keenan, to whom
I owe my first interest in the subject, and who, as teacher, friend, and
colleague, has been a source of inspiration and encouragement.

In an intangible yet real way I am indebted to my students, who have
made teaching a satisfying experience, and to my friends and colleagues
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at the Massachusetts Institute of Technology who contributed the cli-
mate of constructive criticism so conducive to creative effort.

Many individuals and organizations have been cooperative in supply-
ing me with helpful material and I hope that I have not failed to ac-
knowledge any of these at the appropriate place in the text. The Na-
tional Advisory Committee for Aeronautics and the M.I.T. Gas Turbine
Laboratory have been especially helpful along these lines.

I was fortunate in being able to place responsibility for the important
work of the drawings in the competent hands of Mr. Percy H. Lund,
who, with Miss Prudence Santoro, has been most cooperative in this
regard.

For help with the final revision and checking of the manuscript I wish
to give thanks to Dr. Bruce D. Gavril and Dr. Ralph A. Burton.

Finally, but by no means least, I must express a word of appreciation
to Sylvia, and to young Peter, Mardi, and Bunny, who, one and all,
made it possible for me to escape from the office into the somewhat less
trying atmosphere of the home, and there to carry this work forward
to its completion.

AscHER H. SHAPIRO

Arlington, Mass.
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Chapter 17
AXIALLY SYMMETRIC SUPERSONIC FLOW

17.1. Introductory Remarks

Important practical examples of axially symmetric supersonic flow
are (i) the flow past the fuselages of supersonic aircraft, rockets, and
ram jets, (ii) the flow past projectiles, and (iii) internal flow in ducts,
nozzles, and diffusers of round cross section.

Even though there are only two space coordinates in an axially
symmetric flow, the mathematical problems prove to be more difficult
than for two-dimensional flow because an axi-symmetric flow is essen-
tially a space flow, whereas a two-dimensional flow is essentially a plane
flow. Likewise, the physical natures of the two types of flows are quite
different.

The important analytical methods which have been developed and
which are outlined in this chapter are (i) the classical Taylor-Maccoll
exact solution for the flow past a cone, (ii) the approximate linearized
theory, first proposed by von Kérméan and Moore, and based on the
elementary solution for an infinitesimal ‘“‘source’ in a uniform, parallel
supersonic flow, and (iii) the method of characteristics, a procedure for
stepwise construction applicable to any flow pattern, time permitting
its use.

These analyses are based on the assumption of a frictionless, steady
flow, isentropic along each streamline. The flow is taken to be axi-
symmetric. In some cases, the flow is assumed irrotational, but in
others it is necessary to take account of the vorticity in the fluid.

A final section in the chapter summarizes some typical experimental
results.

Hypersonic Similarity Law. In Chapter 19 there is derived a hyper-
sonic similarity law for flow with small perturbations at high supersonic
speeds. The law is applicable when the hypersonic similarity parameter
K = M.r (r = thickness ratio) is of the order of magnitude of unity
or larger. It states that for a given class of affinely related axi-symmetric
bodies the distribution of C, M.’ on the surface depends only on the
parameter K.

This result is relevant to the present chapter because various investi-
gations (see Chapter 19) have shown that the similarity law often
prevails at Mach Numbers which are usually considered to be super-
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652 AXIALLY SYMMETRIC SUPERSONIC FLOW Ch.17

sonic¢ rather than hypersonic. In the present chapter several methods
are presented for determining the pressure distribution on bodies of
revolution. For the range in which the similarity law is valid, it is
necessary to carry out these calculations (which are often tedious)
only for a few values of M.7. Then the similarity law gives, with little
effort, the pressure distributions on members of the particular family
of affinely related shapes investigated for all combinations of M. and
r falling within the range of validity of the law.

NOMENCLATURE

c speed of sound \'A vector velocity

C, pressure coefficient z,y,z Cartesian coordinates

F see Eq. 17.34; also fineness
ratio @ Mach angle

G see Eq. 17.34 B M —1

t Vv -1 é semi-angle of cone; thickness

K similarity parameter, M;7 = ratio of body of revolution
M,/F (/] flow direction

k ratio of specific heats £ z-coordinate of source

M Mach Number P mass density

n direction normal to streamline | o shock angle

P pressure T thickness ratio; r = 1/F

Q source strength; also see Eq. | ¢ perturbation velocity poten-
17.34a tial

r radiusinspherical coordinates; | ® velocity potential
also radius in cylindrical co- | w angle in spherical coordinates
ordinates

R see Eq. 17.11; also radius in | (), signifies conditions upstream
spherical coordinates; also of conical shock
radius to surface of axi- | (),  signifies conditions down-
symmetric body stream of conical shock

s entropy per unit mass () signifies conditions at surface

S cross-sectional area of axi- of cone
symmetric body in plane | (), signifies component in r-di-
normal to axis of symmetry rection

u z-component of perturbation | (),  signifies component in w-di-
velocity rection

U free-stream velocity (o signifies stagnation state

v r-component of perturbation | (),  signifies free-stream condi-
velocity tions

14 velocity ( )r.rir  signifies conditions on charac-

Veoax ~ maximum velocity for adia- teristic curves
batic flow ‘
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17.2. Exact Solution for Flow Past a Cone

In plane supersonic flow a class of simple-wave solutions (Prandtl-
Meyer flow, Chapter 15) was found, defined by the property that the
two velocity components should be functions of each other. In the
corresponding flow pattern all stream properties are uniform on straight
lines in the physical plane, and these straight lines are identical with
the Mach lines. If a simple-wave flow pattern defined by the same
property is sought for an axi-symmetric flow, it is found again that all
stream properties are uniform on straight lines in the physical plane.
These lines are no longer the Mach lines, however, and the solution
requires that these straight lines pass through a common point. Thus,
because of the axial symmetry, all stream properties are constant on
cones having a common vertex. The resulting flow pattern is in fact a
special variety of the general class of conical flows discussed in Chapter
18.

General Nature of Flow Pattern. The type of simple-wave flow out-
lined above could be bounded only by a cone. By assuming that fluid
properties are constant on cones having a common vertex, therefore,
we obtain the flow pattern past a cone (Fig. 17.1a). The practical

. Streamline
Line of Constant (To®)

Stream Properties

Shock Cone

(a)

F1c. 17.1. Flow past cone.

(a) Shock cone and typical streamline.
(b) Hodograph image of streamline.

importance of this flow pattern is not limited to cones, however, since
the solutions for a cone will be applicable to the region near the tip of
any sharp-nosed body of revolution.

A continuous variation of fluid properties from free-stream conditions,
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p, and V,, to the surface of the cone, conditions p, and V,, proves to
be impossible. ® A shock is therefore necessary. But, since the flow
downstream of the shock is by assumption conical, it follows that the
shock itself must be conical and of uniform strength, and must be
attached to the tip of the cone.

Consider a typical streamline (Fig. 17.1a) and its image in the hodo-
graph plane (Fig. 17.1b). Across the shock cone there is a discontinuous
change in direction and velocity from 1 to 2; points 1 and 2 therefore
lie on a common hodograph shock polar originating at point 1. Between
2 and s is a region of conical flow in which all stream properties vary
continuously, the streamline reaching point s on the surface of the
cone only in infinite distance. The velocity vector to point s in the
hodograph plane makes the cone semi-angle § with the axis. A typical
point P, with its corresponding angle wp is shown, together with its
image point in the hodograph plane. All stream properties are constant
on the cone wp, and hodograph point P is the image of the entire cone
wp. Likewise, the line 1-2—P-s is the hodograph image of all streamlines.
Since all streamlines experience the same entropy jump across the shock,
the flow between the shock and the cone is isentropic and irrotational.

Governing Physical Equations. Let us use spherical coordinates r and
w, with corresponding velocity components V, and V, (see Fig. 17.2a).
Then, considering the toroidal-shaped control volume of Fig. 17.2b,
for which the in-going mass flows are indicated, the equation of con-
tinuity states that the net outflux of mass is zero:

%(2#pV,r2-dw-sin o) dr —a": @V ar-drosin g dis =0

Simplifying, and noting that all stream properties are independent of r,
i.e., 9/9r = 0 and 9/9w = d/dw, we have

aVe , 4 do _
do + V. F P 0 (17.1)

2pV,. 4+ pV, cotw + p

Now, considering the velocity components of Fig. 17.2¢, the con-
dition of irrotationality is introduced by setting the circulation around
the boundary of the control volume equal to zero:

V. dr + (V” + % dr)(r + d9) da

which reduces to
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Euler’s equation, the velocity of sound, and the energy equation are,
respectively,
dp = —pVdV = —p(V,dV, + V,dV,) 17.3)

dp/dp = ¢’ (17.4)
- V? (17.5)

pVydr(2wr sinw)

PVr (rdw)(27r sinw

dw // rsin w
é{ | _

©

F1c. 17.2. Analysis of cone flow.

(a) Nomenclature.
(b) Continuity equation.
(c) Equation of irrotationality.

Combining Eqgs. 17.3, 17.4, and 17.5 to eliminate the pressure, we
get

V,dV,+ V,dV, = _dp _ _dpdp _ _czd_P
p p dp p

=m0y lexz_ V2 —
5 ( =

whence
do _ __2 V,dvV,+ V,dV,
p k-1 Ve — V2
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Inserting this expression into Eq. 17.1, and rearranging, we obtain

E—1
2

(2Vr + Vu COtw + d.["m)("mnx2 - Vuz - Vrg)

dw
dv, dv.,
= ( " dw ot dw)V' (17.6)

But, from Eq. 17.2,

av, dv., 4,
whence — = gt

Ve =4 dw dw’

With these it is now possible to eliminate terms in V, from Eq. 17.6.
Thus we obtain, after rearrangement, an ordinary, nonlinear differential
equation of second order for V, in terms of w:

2 _ _ 3
- [kgl(dw) - B o - V'Z)]“kz 1(%)"“"’

- kV (dv) + —(Vm., V.

+ & =DV (Vaer — V) =0 7.7

The integration of this equation was first done by Busemann ®

with a clever graphical construction in the hodograph plane, and sub-
sequently by Taylor and Maccoll “’ by straightforward numerical
integration. Let us consider the latter method first.

Numerical Integration of Taylor and Maccoll. The general procedure for
arriving at solutions to Eq. 17.7 is indicated by the following schedule of opera-
tions:

(i) Select a value of & (cone angle) and of (V,/Va)., corresponding to the
Mach Number at the cone surface.

(ii) Begin with w = §, at which V, = (V,), and V, = 0.

(iii) Integrate Eq. (17.7) stepwise, for small steps in w, by replacing the differ-
ential equation by a finite-difference equation.

(iv) Having found the value of V,/V,.. corresponding to each value of w,
Vw/Vaax may be found by differentiation, using Eq. 17.2.

(v) The final step is to determine the appropriate shock angle o and free-
stream velocity V,/Va... This is done by cut-and-try. For each value of w
during the integration there is a corresponding flow angle # and Mach Number
M. Corresponding to each point of the integration the downstream Mach Num-
ber of a shock having a shock angle ¢ = w and turning angle 6 is compared with
the Mach Number M of the integration. When these two Mach Numbers are
found to be alike, the limit of integration has been reached and the correct shock
strength has been found.

(vi) From the shock tables the approach Mach Number M; may then be
found. Flow properties in the conical-flow region are finally computed by using
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the shock relations for the shock, the isentropic relations for the conical-flow
region, and the values of V,/Vea: and V,/ Ve a8 functions of w found by the
previous integration.

Graphical Construction of Busemann. A geometrical solution to the
cone equations, leading to apple curves analogous to the hodograph
shock polars for plane shocks, is due to Busemann.  The governing
equations must first be put into a form involving only the hodograph
variables V and 6.

Hopoerara EquaTions. From the geometry of Fig. 17.2a,

V,=Vecos(w—0; V,=—Vsin(w— 6 (17.8)
or, differentiating with respect to o,
av, _ _ __de) . _ av _
o = V(l dw) sin (w — 6) + 4 €08 (w— 6) (17.92)
av., _ _dé o _dV . _
Fale V(l dw) cos (w — 6) g S0 (w— 6 (17.9b)
From Eqgs. 17.2 and 17.8, however,
av. e _
do = Vo= —Vsin(w — 6) (17.9¢)
When this is substituted into Eq. 17.9a, we obtain
a0 AV fde (17.9d)

do  Vtan(w — 6)

Eliminating df/dw from Eq. 17.9b, and substituting the expressions for
V., V., dV,/dw, and dV ,/dw given by Eqgs. 17.8, 17.9b, and 17.9¢ into
Eq. 17.6, we get, after rearrangement,

. in 6
V sin (w — O)S.L

av _ - sin w (17.10)
des 2V?sin’ (w — 6)

L - DV = 7

The geometrical relations for two neighboring points, P and P’, on
the same streamline in the hodograph plane are shown in Fig. 17.3.
From Eq. 17.9d, it is'evident that the tangent to the hodograph stream-
line makes the angle (w — 6) with the normal to the velocity vector.
From the geometry of the figure, this may be interpreted as meaning
that the vector change in velocity, dV, must be normal to the line of
constant w. This result might have been reached on physical grounds
since (i) the cones of constant w are surfaces of constant pressure,
(ii) the velocity gradient is normal to these cones, and therefore (iii)
the vector change in V must lie normal to the line of constant w.



