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Preface

This book is divided into two parts. Part I is a modern introduction to the very
classical theory of submanifold geometry. We go beyond the classical theory
in at least one important respect; we study submanifolds of Hilbert space as
well as of Euclidean spaces. Part II is devoted to critical point theory, and
here again the theory is developed in the setting of Hilbert manifolds. The
two parts are inter-related through the Morse Index Theorem, that is, the fact
that the structure of the set of critical points of the distance function from
a point to a submanifold can be described completely in terms of the local
geometric invariants of the submanifold.

Now it is perfectly standard and natural to study critical point theory in
infinite dimensions; one of the major applications of critical point theory is to
the Calculus of Variations, where an infinite dimensional setting is essential.
But what is the rationale for extending the classical theory of submanifolds to
Hilbert space? The elementary theory of Riemannian Hilbert manifolds was
developed in the 1960’s, including for example the existence of Levi-Civita
connections, geodesic coordinates, and some local theory of submanifolds.
But Kuiper’s proof of the contractibility of the group of orthogonal transfor-
mations of an infinite dimensional Hilbert space was discouraging. It meant
that one could not expect to obtain interesting geometry and topology from
the study of Riemannian Hilbert manifolds with the seemingly natural choice
of structure group, and it was soon realized that a natural Fredholm struc-
ture was probably necessary for an interesting theory of infinite dimensional
Riemannian manifolds. However, for many years there were few interesting
examples to inspire further work in this area. The recent development of
Kac-Moody groups and their representation theory has changed this picture.
The coadjoint orbits of these infinite dimensional groups are nice submani-
folds of Hilbert space with natural Fredholm structures. Moreover they arise
in the study of gauge group actions and have a rich and interesting geometry
and topology. Best of all from our point of view, they are isoparametric (see
below) and provide easily studied explicit models that suggest good assump-
tions to make in order to extend classical Euclidean submanifold theory to a
theory of submanifolds of Hilbert space.
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One of the main goals of part I is to help graduate students get started
doing research in Riemannian geometry. As a result we have tried to make it
a reasonably self-contained source for learning the techniques of the subject.
We do assume that the reader is familiar with the elementary theory of dif-
ferentiable manifolds, as presented for example in Lang’s book [La], and the
basic theory of Riemannian geometry as in Hicks’ book [Hk], or selected parts
of Spivak’s [Sp]. But in Chapter 1 we give a review of finite dimensional
Riemannian geometry, with emphasis on the techniques of computation. We
use Cartan’s moving frame method, always trying to emphasize the intrinsic
meaning behind seemingly non-invariant computations. We also give many
exercises that are meant as an introduction to a variety of interésting research
topics. The local geometry of submanifolds of R" is treated in Chapter 2. In
Chapter 3 we apply the local theory to study Weingarten surfaces in R and
S3. The focal structure of submanifolds and its relation to the critical point
structure of distance and height functions are explained in Chapter 4. The
remaining chapters in part I are devoted to two problems, the understand-
ing of which is a natural step towards developing a more general theory of
submanifolds:

(1) Classify the submanifolds of Hilbert space that have the “simplest local
invariants”, namely the so-called isoparametric submanifolds. (A sub-
manifold is called isoparametric if its normal curvature is zero and the
principal curvatures along any parallel normal field are constant).

(2) Develop the relationship between the geometry and the topology of
isoparametric submanifolds.

Many of these “simple” submanifolds arise from representation theory.
In particular the generalized flag manifolds (principal orbits of adjoint repre-
sentations) are isoparametric and so are the principal orbits of other isotropy
representations of symmetric spaces. In fact it is now known that all ho-
mogeneous isoparametric submanifolds arise in this way, so that they are
effectively classified. But there are also many non-homogeneous examples.
In fact, problem (1) is far from solved, and the ongoing effort to better un-
derstand and classify isoparametric manifolds has given rise to a beautiful
interplay between Riemannian geometry, algebra, transformation group the-
ory, differential equations, and Morse theory.

In Chapter 5 we develop the basic theory of proper Fredholm Riemannian
group actions (for both finite and infinite dimensions). In Chapter 6 we study
the geometry of finite dimensional isoparametric submanifolds. In Chapter 7
we develop the basic theory of proper Fredholm submanifolds of Hilbert space
(the condition “proper Fredholm” is needed in order to use the techniques
of differential topology and Morse theory on Hilbert manifolds). Finally, in
chapter 8, we use the Morse theory developed in part II to study the homology
of isoparametric submanifolds of Hilbert space.

Part II of the book is a self-contained account of critical point theory
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on Hilbert manifolds. In Chapters 9 we develop the standard critical point
theory for non-degenerate functions that satisfy Condition C: the deformation
theorems, minimax principal, and Morse inequalities. We then develop the
theory of linking cycles in Chapters 10; this is used in Chapter 8 of Part
I to compute the homology of isoparametric submanifolds of Hilbert space.
In Chapter 11, we apply our abstract critical point theory to the Calculus
of Variations. We treat first the easy case of geodesics, where the abstract
theory fits like a glove. We then consider a model example of the more
complex “multiple integral” problems in the Calculus of Variations; the so-
called Yamabe Problem, that arises in the conformal deformation of a metric
to constant scalar curvature. Here we illustrate some of the major techniques
that are required to make the abstract theory work in higher dimensions.

This book grew out of lectures we gave in China in May of 1987. Over
a year before, Professor S.S. Chern had invited the authors to visit the re-
cently established Nankai Mathematics institute in Tianjin, China, and lecture
for a month on a subject of our choice. Word had already spread that the
new Institute was an exceptionally pleasant place in which to work, so we
were happy to accept. And since we were just then working together on
some problems concerning isoparametric submanifolds, we soon decided to
give two inter-related series of lectures. One series would be on isopara-
metric submanifolds; the other would be on aspects of Morse Theory, with
emphasis on our generalization to the isoparametric case of the Bott-Samelson
technique for calculating the homology and cohomology of certain orbits of
group actions. At Professor Chern’s request we started to write up our lecture
notes in advance, for eventual publication as a volume in a new Nankai Insti-
tute sub-series of the Springer Verlag Mathematical Lecture Notes. Despite
all good intentions, when we arrived in Tianjin in May of 1987 we each had
only about a week’s worth of lectures written up, and just rough notes for the
rest. Perhaps it was for the best! We were completely surprised by the nature
of the audience that greeted us. Eighty graduate students and young faculty,
interested in geometry, had come to Tianjin from all over China to participate
in our mini courses. From the beginning this was as bright and enthusiastic a
group of students as we have lectured to anywhere. Moreover, before we ar-
rived, they had received considerable background preparation for our lectures
and were soon clamoring for us to pick up the pace. Perhaps we did not see as
much of the wonderful city of Tianjin as we had hoped, but nevertheless we
spent a very happy month talking to these students and scrambling to prepare
appropriate lectures. One result was that the scope of these notes has been
considerably expanded from what was originally planned. For example, the
Hilbert space setting for the part on Morse Theory reflects the students desire
to hear about the infinite dimensional aspects of the theory. And the part
on isoparametric submanifolds was expanded to a general exposition of the
modern theory of submanifolds of space forms, with material on orbital ge-
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ometry and tight and taut immersions. We would like to take this opportunity
to thank those many students at Nankai for the stimulation they provided.

We will never forget our month at Nankai or the many good friends we
made there. We would like to thank Professor and Mrs. Chern and all of the
faculty and staff of the Mathematics Institute for the boundless effort they put
into making our stay in Tianjin so memorable.

After the first draft of these notes was written, we used them in a differ-
ential geometry seminar at Brandeis University. We would like to thank the
many students who lectured in this seminar for the errors they uncovered and
the many improvements that they suggested.

Both authors would like to thank The National Science Foundation for its
support during the period on which we wrote and did research on this book.
We would also like to express our appreciation to our respective Universities,
Brandeis and Northeastern, for providing us with an hospitable envoironment
for the teaching and research that led up to its publication.

And finally we would both like to express to Professor Chern our grat-
itude for his having been our teacher and guide in differential geometry. Of
course there is not a geometer alive who has not benefited directly or indi-
rectly from Chern, but we feel particularly fortunate for our many personal
contacts with him over the years.
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Chapter 1.

Preliminaries.

In this chapter we review some basic facts concerning connections and
the existence theory for systems of first order partial differential equations.
These are basic tools for the study of submanifold geometry. A connection
is defined both globally as a differential operator (Koszul’s definition) and
locally as connection 1-forms (Cartan’s formulation). While the global defi-
nition is better for interpreting the geometry, the local definition is easier to
compute with. A first order system of partial differential equations can be
viewed as a system of equations for differential 1-forms, and the associated
existence theory is referred to as the Frobenius theorem.

1.1 Connections on a vector bundle.

Let M be a smooth manifold, £ a smooth vector bundle of rank k£ on M, and
C°(€) the space of smooth sections of &.

1.1.1. Definition. A connection for £ is a linear operator
V:C®) — C®(T*M Q)

such that
V(fs) = df ® s + fV(s)

for every s € C®(¢) and f € C°(M). We call V(s) the covariant derivative
of s.

If ¢ is trivial, ie., € = M x R*, then C*(¢) can be identified with
C>°(M,R*) by s(z) = (z, f(z)). The differential of maps gives a trivial
connection on ¢, ie., Vs(z) = (z,df;). The collection of all connections
on £ can be described as follows. We call k¥ smooth sections si,...,Sk
of £ a frame field of ¢ if si(z),...,sk(x) is a basis for the fiber £, at
every ¢ € M. Then every section of { can be uniquely written as a sum
fisi+...+ frsk, where f; are uniquely determined smooth functions on M.
A connection V on £ is uniquely determined by V(s;),..., V(s), and these
can be completely arbitrary smooth sections of the bundle T*M ® £. Each
of the sections V(s;) can be written uniquely as a sum ) w;; ® s;, where
(wij) is an arbitrary n x n matrix of smooth real-valued one forms on M. In



4 Part I Submanifold Theory

fact, given V(s1),..., V(sx) we can define V for an arbitrary section by the
formula

V(fis+ -+ frsk) = Y _(dfi ® si + fiV(s1).

(Here and in the sequel we use the convention that ) always stands for the
summation over all indices that appear twice).

Suppose U is a small open subset of M such that £|U is trivial. A frame
field sq,...,s of £|U is called a local frame field of £ on U.

It follows from the definition that a connection V is a local operator,
that is, if s vanishes on an open set U then Vs also vanishes on U. In fact,
since s(p) = 0 and ds, = 0 imply Vs(p) =0, Vis a ﬁrst order differential
operator ([Pa3]).

Since a connection is a local operator, it makes sense to talk about its
restriction to an open subset of M. If a collection of open sets Uy covers M
such that £|U, is trivial, then a connection V on ¢ is uniquely determined by
its restrictions to the various U,. Let s1, ..., sx be a local frame field on U,,
then there exists unique n x n matrix of smooth real-valued one forms (w;;)
on U, such that V(s;) = Y wij ® sj.

Let GL(k) denote the Lie group of the non-singular k x k real matrices,
and gl(k) its Lie algebra. If s; and s} are two local frame fields of { on
U, then there is a uniquely determined smooth map ¢ = (gi;) : U — GL(k)

uch that s* = 5 gijs;. Let g~' = (¢*) denote the inverse of g, so that

=Y g'is* s}. Suppose

Vs,=Zw,-]-®sj, Vs; =Zw;-*j®s;.

Let w = (w;j) and w* = (w};). Since

Vst = V(> gimsm) = ) dgimsm + gimVsm

o Z(dgzm = Zgikwkm)sm
m k

= z(z dgimg™ + Z Gikwkmg™ )8}
] m,k

Eop Zwlj 7

we have
= (dg)g™" +gwg ™"

Given an open cover U, of M and local frame fields {s{'} on U,
suppose s¢ Z(gf‘ﬂ)s on U, NUg. Let g*f = (g“ﬁ) Then a connection
on € is deﬁncd by a collectlon of gl(k)—valued 1-forms w* on Uy, such that
on Uy N Up we have w? = (dg®f)(g*#)~! + g*Pw(g*F)1.
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Identify T*M ® ¢ with L(TM,¢), and let Vxs denote (Vs)(X). For
X,Y € C®(TM) and s € C*(£) we define

K(X,Y)(s) = —(VxVy — VyVx — Vix,y])(s)- (1.11)
It follows from a direct computation that
K{Y: X)) = ~-K(X,Y),
KiIX Y )= KX, $)Y )= TK(X)Y),
K(X,Y)(fs) = FK(X,Y)(s).
Hence K is a smooth section of L(é ® A\’ TM, €) ~ L(¢, N T*M @ ¢).

1.1.2. Definition. This section K of the vector bundle L(§, /\2 T*M ®¢)
is called the curvature of the connection V.

Recall that the bracket operation on vector fields and the exterior differ-
entiation on p forms are related by

do(Xoy. -, Xp) = Y (-1 Xaw(Xo, ..., Xiy. -, Xp)

)

+ 3 ()X, Xj], Xo, - Kiy ooy Xy Xp).
1<g

(1.1.2)

Suppose si,...,s is a local frame field on U, and Vs; = > wii B8y,
Then there exist 2-forms €2;; such that

K(s) =) ;®s;.
Since
—K(X,Y)(si) = VxVys;i — VyVxsi — Vix,y]si

= Vx() wij(¥)s;) — Vy(D_wij(X)s;)
— ) wii([X,Y])s;

=Y (X(wij(Y)) = Y(wii(X)) — wii([X, Y]))s;
+ Y (@i (Y )wir(X) = wis (X )wje(Y))sk

= (dwij = ) wik Awkj)(X,Y) 55,

we have
~Q; = dw;; — E Wik A Wkj.
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Thus K can is locally described by the k£ x k matrix 2 = (2;;) of 2-forms
just as V is defined locally by the matrix w = (w;;) of 1-forms. In matrix
notation, we have

—N=dw—-—wAw. (1.1.3)

Let ¢ = (gij) : U — GL(k) be a smooth map and let w = (dg)g~'.
Then w is a gl(k)— valued 1-form on U, satisfying the so-called Maurer-
Cartan equation

dw =w Aw.

Conversely, given a gl(k)— valued 1-form on U with dw = w Aw., it follows
from Frobenius theorem (cf. 1.4) that given any zo € U and gy € GL(k) there
is a neighborhood U of z¢ in U and a smooth map ¢ = (g;;) : Uy — GL(k)
such that g(zo) = go and (dg)g~! = w. Thus dw = w Aw is a necessary and
sufficient condition for being able to solve locally the system of first order
partial differential equations:

dg = wg. (1.14)

Let e; denote the i'* row of the matrix g and w = (w;;). Then (1.1.4) can be

rewritten as
déyi= E wi; X ej.
J

1.1.3. Definition. A smooth section s of £|U is parallel with respect to V
i Vs=0onU.

1.1.4. Definition. A connection is flat if its curvature is zero.

1.1.5. Proposition. The connection V on £ is flat if and only if there exist
local parallel frame fields.

PROOF. Let s; and w = (w;;) be as before. Suppose €2 = 0, then w
satisfies the Maurgr- Cartan equation dw = w Aw. So locally there exists a
GL(k)— valued map g = (g;;) such that (dg)g™' =w. Let g~! = (¢"), and
st =2,9"s;. Then Vs} = Y w; ® s}, and

w*=d(g™")g+ g 'wg
=—g7'(dg)g g+ 97 (dg)g " g =0

So s} is a parallel frame. &

1.1.6. Definition. A connection V on £ is called globally flat if there exists
a parallel frame field defined on the whole manifold M.
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1.1.7. Example. Let £ be the trivial vector bundle M X R*, and V the
trivial connection on £ given by the differential of maps. Then a section
s(z) = (z, f(x)) is parallel if and only if f is a constant map, so V is
globally flat.

1.1.8. Remarks.
(1) If £ is not a trivial bundle then no connection on £ can be globally flat.
(i) A flat connection need not be globally flat. For example, let M be
the Mobius band [0,1] x R/ ~ (where (0,t) ~ (1,—t))). Then the trivial
connection on [0, 1] x R induces a flat connection on T'M. But since T'M is
not a product bundle this connection is not globally flat.

Given zo € M, a smooth curve « : [0,1] — M such that a(0) = z, and
v € &g, (the fiber of ¢ over zy), then the following first order ODE

Va,(t)v = 0, U(O) = Yo, (115)

has a unique solution. A solution of (1.1.5) is called a parallel field along
a, and v(1) is called the parallel translation of vy along a to a(1). Let
P(a) : €, — &g, be the map defined by P(a)(vg) = v(1) for closed curve
a such that «(0) = a(1) = zo. The set of all these P(a) is a subgroup of
GL(¢;,), that is called the holonomy group of V with respect to zo. It is
easily seen that V is globally flat if and only if the holonomy group of V is
trivial.

1.1.9. Definition. A local frame s; of vector bundle £ is called parallel at
a point z, with respect to the connection V, if Vs;(z¢) = 0 for all z.

1.1.10. Proposition. LetV be a connection on the vector bundle € on M.
Given xo € M, then there exist an open neighborhood U of x, and a frame
field defined on U, that is parallel at x.

PROOF. Let s; be a local frame field, Vs; = ij,-j ® sj, and
w = (w;;). Let zy,...,z, be a local coordinate system near z,, and
w = Y, fi(z) dz;, for some smooth gl(k) valued maps f;. Let a; = fi(xo).
Then a; € gl(k), and g~'dg + w = 0 at ¢, where g(z) = exp(}_; z;a:).
So we have dgg~! + gwg™! = 0 at zo, i.e., st = Y gijs; is parallel at zo,
where g = (gi;). ®

Let O(m, k) denote the Lie group of linear isomorphism that leave the
following bilinear form on R m+k jnvariant:

m

(z,y) = Z-’tiyi - Z TmtjYm+j-

i=1 j=1
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So an (m + k) x (m + k) matrix A is in O(m, k) if and only if
A'EA=E, where E = diag(l,...,1,-1,...,-1),
and its Lie algebra is:
o(m,k)={A€glim+k)| A'E+ EA=0}.
1.1.11. Definition. A rank (m + k) vector bundle £ is called an O(m, k)—
bundle (an orthogonal bundle if £ = 0) if there is a smooth section g of

S2(€*) such that g(z) is a non-degenerate bilinear form on ¢, of index k for
all z € M. A connection V on £ is said to be compatible with g if

X(g(s,1)) = 9(Vxs,t) + (s, Vx1),
for all X € C°(TM),s,t € C*(§).

Suppose s, ..., Sm+k i a local frame field, g(s:, s;) = gij, and
Ns; = Ewij ® s;j.
J

Then V is compatible with ¢ if and only if
wG + Gw' = dG,
where w = (w;;) and G = (gi;). In particular, if G = E as above, then
WE+ Bt =0, (1.1.6)
i.e., w is an o(m, k)— valued 1-form on M.

The collection of all connections on ¢ does not have natural vector space
structure. However it does have a natural affine structure. In fact if V; and
V. are two connections on £ and f is a smooth function on M then the linear
combination fV; + (1 — f)V, is again 4 well-defined connection on §, and
V1 — V, is a smooth section of L(§,T*M ® £).

Next we consider connections on induced vector bundles. Given a
smooth map ¢ : N — M we can form the induced vector bundle ¢*¢.
Note that there are canonical maps

@™ : C7(6) = C2(¢0),

o* : O%(T*M) — C=(T*N).



