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Preface

In this lecture note asymptotic approximation methods for multivariate inte-
grals, especially probability integrals, are developed. It is a revised version
of my habilitationsschrift “Asymptotische Approximationen fiir Wahrschein-
lichkeitsintegrale”. The main part of this research was done when I worked at
the Technical University and the University of Munich.

The motivation to study these problems comes from my work in the research
project “Zuverlassigkeitstheorie der Bauwerke” (reliability theory of structures)
at the Technical University of Munich in the department of civil engineering.
For the tolerant support of the mathematical research in this project I would
like to thank Prof. Dr.-Ing. H. Kupfer.

I am grateful to Prof. Dr.-Ing. R. Rackwitz and Prof. Dr.-Ing. G.I. Schuéller
that they made me clear the engineering topics of reliability theory and helped
me in my research. Further I would like to thank my former colleagues at the
Technical University of Munich and at the University of Munich which supported
me during my work at these universities: Dr.-Ing. B. FieBler, Dr. M. Hohenbich-
ler, Dr. A. Rosch, Dr. H. Schmidbauer and Dr. C. Schneider. Additionally I
would like to express my gratitude to Prof. Dr. F. Ferschl for pointing out occa-
sional errors and misprints in the original German version.

The major part of this revision was made when I stayed as visiting fellow
at the University of New South Wales in 1991. I would like to thank especially
Prof. A. M. Hasofer for his help and for his kind invitation to the University of
New South Wales and to express my delight at having worked there.

For their help and discussions I thank wholeheartedly Prof. Dr. F. Casciati,
Prof. Dr. L. Faravelli (both University of Pavia), Prof. Dr. P. Filip (FH Bochum),
Prof. Dr. K. Marti (University of the Federal Armed Forces at Neubiberg) and
Prof. Dr. W.-D. Richter (University of Rostock). Prof. Dr. M. Maes (University
of Calgary) knows what I mean.

For eliminating the worst bugs in my English I thank Poul Smyth, the Irish
poet of the Bermuda triangle, and for making a cover design Ringo Praetorius,
the executioner of Schichtl at the Oktoberfest. Unfortunately the publisher and
the series editors decided not to use this cover design.

Finally a short comment about the mathematical level of this note should
be made. It is intended also for mathematically interested reliability engineers.
Probably, therefore, the mathematicians will complain about the low level and
the inclusion of too much elementary material and the engineers will go the other
way.

Calgary, September 1994

Karl Wilhelm Breitung



Notation

The set of the natural numbers is denoted by IV and the set of complex numbers
by €. The n-dimensional euclidean space is denoted by IR"™. For the set of the
vectors in IR™ with all components being positive we write IR.. A vector in
IR"™ is written as  and the zero vector (0,...,0) as 0. The transpose of « is
written as 7. The unit vector in direction of the z;-axis is denoted by e;. For
the euclidean norm of a vector # we write |#| and for the scalar product of
two vectors  and y we use (x,y). The subspace of IR" spanned by k vectors

ai,...,a; is written as spanf[a,...,ax]. For the orthogonal complement of a
subspace U C IR™ we write U*t.
An n x m-matrix is written with bold Roman letters: A B,... The n-

dimensional unity matrix is denoted by I, and an n x k matrix consisting of
zeros by o0, ;. The cofactor matrix C of an n x n matrix A is the n x n matrix
C = ((—1)"*7 det(Ayj))ij=1, n with A;; being the (n — 1) x (n — 1) matrix
obtained from A by deleting the i-th row and the j-th column. The rank of a
matrix B, i.e. the number of its linearly independent column vectors, i1s denoted

by rk(B).
The probability of an event A is denoted by IP(A). An one-dimensional
random variable is denoted by a capital Roman letter: X Y ... and for n-

dimensional random vectors bold capital Roman letters are used: X,Y ...
For the probability density function and the cumulative distribution function of
a random variable we write p.d.f. and c.d.f. respectively. The expected value
of a random variable X is written as IZ(X) and its variance as var(X). The
covariance between X and Y is denoted by cov(X,Y).

A function f : D — IR on an open set D C IR™ is called a C''-function
if all partial derivatives of first order exist and are continuous. Analogously
by induction C"-functions (r > 1) are defined. A function f : D — IR on an
open set D C IR" is called a C"-function if all partial derivatives of order r — 1
exist and are continuously differentiable. Further a function f : D — IR on a
closed set D C IR" is called a C"-function if there is an open set U C IR"™ with
D C U such that f is defined on U and f is according to the definition above a
CT-function.

A function T': R" — R,z — T(x) = ({1(z),...,im(x)) is called a C"-
vector function if all component functions ty(x), ..., ¢, (x) are C"-functions. For
a function f : IR™ — IR the first partial derivatives with respect to the variables
z; (i=1,...,n) at the point = are denoted by f(x) or a])(z) and the gradient of
by V f(x). The second derivatives of this function with respect to the variables

02'”2:) and

(‘).l‘,' ()l‘]’

z;and z; (4,7 =1,...,n) at the point & are denoted by fii(x) or

its Hessian by H;(x).

For functions of the form f(x,y) by Vg f(x,y) the gradient with respect to
the vector = is denoted. In the same way Vq f(x,y) means the gradient with
respect to the second vector y. The divergence of a C''-vector function w(x) is

denoted by div(u(z)).
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Chapter 1

Introduction

1.1 The Evaluation of Multivariate Integrals

In many fields of applied mathematics it is necessary to evaluate multivariate
integrals. In a few cases analytic solutions can be obtained, but normally ap-
proximation methods are needed. The standard methods here are numerical
and Monte Carlo integration. In spite of the fact that computation time today
1s accessible plentiful, such procedures are sufficient for many problems, but in
a number of cases they do not produce satisfactory results. Such integrals ap-
pear for example in structural reliability, stochastic optimization, mathematical
statistics, theoretical physics and information theory.
If we consider an integral in the form

/f(m)dw (1.1)
J

with £ C IR" and f : FF — IR, there are three main causes, which might make
numerical or Monte Carlo integration difficult:

1. The dimension n of the integration domain is large.
2. The domain F has a complicated shape.

3. The variation of f in the domain F is large.

Often not only the integral itself, but its derivatives with respect to parameters
are of interest. The most general case 1s that the integrand f(z) as well as the
integration domain F' depend on parameters.

Another important point is that often not only one integral has to be com-
puted, but the behavior of the integral under parameter changes is of interest.
Then many evaluations of the integral are necessary. A similar problem occurs if
some sort of optimization should be made. Further in reliability problems with
random finite elements (see for example [4]) even now the necessary computing
time can be prohibitive.



Methods for analytic approximations have been developed in different fields
and sometimes due to the specialization nowadays in science some of them have
been rediscovered at least once or twice. Therefore it is attempted here to
give a list of the available textbooks in this field and certainly for the field of
multivariate Laplace methods an overview of the relevant results.

The basic idea of such methods is that instead of integrating over the whole
domain F', points or subsets are identified from whose neighborhoods the main
contributions to the integral come from. Therefore instead of integrating the
numerical problem is then to find these sets by some optimization method.

Such approximation methods are not a solution for all problems. Their ef-
ficitency and usefulness depends on the problem. If the underlying assumptions
about the structure of the integral are not fulfilled to some degree, the use of
other schemes might be better. In some cases then the use of asymptotic ap-
proximation methods, which are described in this book, perhaps in combination
with the aforementioned methods, is advisable.

1.2 Structural Reliability

One field, in which such concepts had been very successful, is structural relia-
bility. In the following we will give a short outline of this field.

The first proposals to use probabilistic models for structural reliability are
from [98], [78] and [64], but not before the sixties such problems were studied
more intensively. Then in the last thirty years in mechanical and civil engineering
probabilistic methods were developed for the calculation of the reliability of
components and structures, since pure deterministic methods were not adequate
for a number of problems. Textbooks about such methods are [10], [16], [17],
[39], [84], [89], [99], [124] and [128].

In structural reliability the computation of multivariate integrals is an impor-
tant problem. The studies in this lecture note were motivated by the problems
in this field, since standard methods did not lead to satisfactory results.

At the beginning the random influences acting on a structure were modelled
simply by two time-invariant random variables, a load variable L and a resistance
variable R. If L > R, the structure failed, if L < R, it remained intact.

But soon it was clear that such a model was far too simple even for com-
ponents of a structure. Even if the time influence is neglected, for a sufficient
description of the random influences a random vector X = (X;,..., X,) with a
large number n of components is needed. In general one part of this vector is
composed of load variables and the other of resistance variables.

If now the p.d.f. f(x) of the random vector X which models the random
influences on a structure is known and the conditions for failure can be expressed
as a function of the vector, the probability for failure can be calculated. Then the
integration domain is given by a function g(z) in the form {z;g(x) < 0}. The
function g(x) describes the state of the structural system under consideration.
If g(&) > 0, the system is intact and if g(x) < 0, the system fails.



The failure domain is denoted by F' = {=;g(x) < 0}, the safe domain by
S = {z;g9(x) > 0} and the limit state surface, the boundary of F' by G =

{z;9(x) = 0}.

L2

Limit state surface G = {z; g(x) = 0}

Failure domain F' = {x; g(z) < 0}

Safe Domain S = {z; g(x) > 0}

Figure 1.1: Failure domain, limit state surface and safe domain

Then the problem is to compute the probability of failure

P(F) = / f(x) de. (1.2)

g9(x)<o

Often we can distinguish two types of random variables in the random vector
X . Firstly random variables, which can not be changed by the design of the
structure, such as loads acting on it; secondly variables, which can be influenced
by the design, for example the strength of concrete.

It was tried first to use the standard methods for the calculation of such
integrals mentioned above to compute these multivariate probability integrals.
In numerical or Monte Carlo integration then the integral is approximated in



the form

N

P(F) =Yy w(zi)f(z:). (1.3)

i=1

Here the ®;’s are points in F', determined by a deterministic or random
mechanism and the w(x;) are their respective weights. The main difficulties in
computing this integral are that in general the probability density f(x) is small
in the failure domain and that the shape of the domain is not explicitly known,
but given implicitly by the function g(«); therefore standard techniques have
difficulties in finding a scheme for creating enough points in F'. Soon it became
clear that in their usual form they were not suited to this problem, since they
were too time consuming and inaccurate.

Certainly now with the increasing capacity of computers it is possible to
solve more and more reliability problems, without spending any effort on refining
methods. But the author thinks that it is absolutely wrong to say that we just
have to wait until the computing capacity is large enough to make it possible to
solve more complex problems. Since the main point in structural reliability and
other fields is not only the computation of probabilities, but the gain of insight
in the structure of the problem. If an approximate analytic solution is found,
the important influences on the failure mechanism become often much clearer.

The usual formulation of the problem, compute IP(F'), given the density
f(x) and the limit state function g(x), is misleading. In reality the probability
distribution is known only approximately and also the limit state function is only
an appproximation. The problem of estimating such a function by experimental
design is considered in [58] and [32]. Der Kiureghian [44] and Maes [90] treat
the problem of structural reliability under model uncertainties.

Furthermore in a problem of structural reliability the probability of failure
depends on a number of design parameters in the structure. Some of these
parameters can be changed by altering the design of the structure, others not.
Therefore the real problem here is more complex than it appears at the first

glance.
Therefore a more realistic probabilistic model is in the form

P(F|Y) = / f(z]|9) da. (1.4)
g(x <o
Here all functions depend on a parameter vector ¥ = (Vy, ..., V).

1. g(x|9) is the limit state function for the parameter value 9.

2. f(x|9) is the probability density function of the random vector X for the
parameter value 1.

The usual formulation is that the parameter vector 1 is assumed to be fixed
and known. Then for this fixed vector ¥ = ¥, the probability IP(F|Jq) is
computed. But in the more general setting this is only one of the interesting



quantities. If the values of the parameters are known and can be influenced by
the design of the structure, one problem can be to optimize the structure in some
sense. In reliability the quantity to be minimized is usually the probability of
failure, but there are restrictions on the possible parameter values.

The following quantities and distributions may be of interest:

1. The partial derivatives of IP(F|J) with respect to the components
1, ..., of the parameter vector.

2. The distribution of IP(F|9) if there is a probability distribution of 4.

3. The asymptotic form of the conditional distribution of X under the con-
dition g(X|9) < 0.

Until now only the time-invariant reliability problem is solved sufficiently.
Often time-variant problems are transformed into a time-invariant form, for
example by modelling a random process only by its extreme value distribution.
This 1s related to the fact that the theory of multivariate stochastic processes
and their extreme value theory is restricted mainly to Gaussian processes.

In probabilistic models for structural reliability we have two different prob-
ability theory and statistical inference. With methods of probability theory and
other mathematical concepts the structure of the mathematical model is studied.
The other problem is the relation of the model to reality. A common feature of
the majority of books and papers in structural reliability is that the statistical
problems are often neglected.

We will discuss shortly the problems of statistical inference in reliability
modelling. Since in reliability problems data are often sparse or do not exist
at all, conclusions are in many cases based on a lot of assumptions, whose cor-
rectness can not be proved. The results, which are obtained, are difficult to
check. For example if scientist A computes a failure probability of 10~ for a
single building during one year and scientist B instead a probability of 107°,
who is right? An approach for a solution might be the development of proba-
bilistic models, which make more specific predictions (see for example [30] and
[34]). This would mean that not only failure probabilities are computed, but
the probability distributions of other events, which are connected with the oc-
currence of failures, but can be observed more frequently. By such an approach,
we get an iterative process of model building, prediction, observation and model
improvement.

In the book of Matheron [97] the general problem of probabilistic models in
science is discussed. The importance of this book is that here it is made clear
that the justification and the acceptance of these methods in science comes from
the fact that they give for many problems satisfactory solutions, but not that
they are correct descriptions of the reality. This might be quite unintelligible
for statisticians who have never been involved in any applied work as they have
lived in a pure academic environment. But anyone who works at problems which
have some connection with the real world outside Academia will probably agree
that this is not so wrong at all.



An alternative method in coping with uncertainty in structural reliability is
for example fuzzy set theory (see [6]). In fuzzy set methods uncertainties, which
are not of a probabilistic nature, can be modelled. A drawback is that there is
no clear rule how to incorporate additional information as it is done for example
in the Bayesian concept by Bayes’ theorem.

A further alternative concept is convex modelling (see [9]). In convex mod-
elling no specific probability distribution for the random influences is assumed
and only bounds for admissible influences are derived.

Another problem of statistical inference in reliability is that the usual statis-
tical estimation methods are focused on fitting distributions to the central part
of the data and not to the tails. Here modified estimation procedures should be
used (see [40]), which give more weight to the fit in the distribution tails, since
in reliability calculation the risk is mainly in underestimating the extremes of
random influences and not in making wrong estimates about their means.

1.3 Stochastic Optimization

A mathematical field, where similar problems occur, 1s stochastic optimization.
Here a given stochastic system, for example a network, a technical structure or
a queuing system, should be optimized in its performance, which is described
by a function of the design parameters, but is in general not known analytically.
Basic concepts of stochastic optimization can be found in the book of Rubinstein
[123].

For a given stochastic system we have an integral in the form

1(9) = / R(z|9)f(x|9) dx, (1.5)
n"
and a set of k constraint functions
gi(9)=...=g(9)=0. (1.6)

Here 4 is an m-dimensional parameter vector, who can achieve values in a subset
VCR™. f(z|¥) withx € R" is a p.d.f., R(x|9) is a function, which describes
the performance of the system for the given values 9 and x. The functions
91(9), ..., gk () give restrictions for the possible values of ¥ and describe usually
costs or available resources. Then I(19) is the performance of the system for the
parameter vector 1. In stochastic optimization for fixed values of the parameter
¥ the values of at least some of the functions are not known exactly and have
to be estimated by some procedure. Usually here the problem is considered
that g;(9) = F(h;(X)) and only random samples are available from which the
expected value I (h;(X)) has to be estimated.

In this formulation the task is to minimze the integral () under the restric-
tions in equation (1.6). For this purpose it is necessary to evaluate the function
I(19) and at least some of its sensitivities (derivatives, gradients, Hessians, etc.)



with respect to changes in the parameter vector ¥. To compute these, various
methods can be used. Here often Monte Carlo methods are adequate.

Applications of stochastic optimization methods in structural design are
given in [96] and [95].

1.4 Large Deviations and Extreme Values

Large deviation theory studies the asymptotic behavior of the probabilities
IP(AA) as A — oo; here IP(.) is a probability measure on a measurable space
(F,B) and A is an subset of E. If for example the underlying space is the
n-dimensional Euclidean space IR™, then such probabilities are given by n-
dimensional integrals. The case of the standard normal probability measure
is considered in the papers of Richter ([114], [14], [115], [116], [118] and [107]).

Similar questions appear if we study the asymptotic distribution of the sum
S, X; of random variables with mean zero (see [18], [19] and [119]).

Extreme value theory 1s concerned with the maxima (or minima) of se-
quences of random variables or of a stochastic process. If we consider a sequence
X1, Xy, ...of 1.i.d random variables, the classical question of extreme value the-
ory was to find under which conditions by a suitable scaling and shifting a
non-degenerate limit distributions exist for the sequences

Y, = max(Xy,..., Xp) resp. Z, = min(Xq,..., X,). (1.7)

The classical textbook in this field is the book [68] of Gumbel written 1958. The
textbook of Leadbetter, Lindgren and Rootzén [82] gives in the first part an
overview of further development of the extreme value theory for sequences.
In the case of a stochastic process X (t) we consider the random variables
Y(T) = max X(t) resp. Z(T) = min X(t). 1.8
(1) ogzg'r() p. Z(T) ugzg']'() (1.8)
Here similar results as for sequences can be obtained, see [43] and [82]. The
results in these books are usually derived by approximating the process by a
suitably chosen sequence of random variables. An alternative method, based on
sojourn times, is outlined in [12].

1.5 Mathematical Statistics

Similar questions arise In mathematical statistics. Here asymptotic methods
play an important role in investigating large sample behavior. An overview of
such applications can be found in the book of Barndorff-Nielsen and Cox [7].
Here a sequence of 1.1.d. random variables X, X4, ... 1s given and for functions
f(X1,...,X,) as n — oo asymptotic approximations are sought. A standard
example are the asymptotic behaviors of the sample mean X = n~! SN
and the sample variance S = (n — )71 3" (X; — X)?, which converge under
some regularity conditions to the respective moments of the X;’s.



If the random variable X has the p.d.f. f(z) the joint p.d.f. of the first n ran-
dom variables is []I_, f(z:) and the log likelihood function is In([]/_, f(zi)) =
S0, In(f(zi)). The asymptotic behavior of these function can be studied using
the Laplace method. In the case of random vectors X1, X,,... we need again
results about the asymptotic structure of multivariate integrals.

Additional importance have asymptotic approximation methods in Bayesian
statistics, where the derivation of the posterior distribution requires often the
evaluation of multivariate integrals. The first who used the Laplace method out-
lined 1n this book for such problems, i.e. the derivation of posterior distributions,
was Lindley [86]. Further results are given in [131].

1.6 Contents of this Lecture Note

In chapter 2 first some results from linear algebra and analysis are given for ref-
erence and some new results about sufficient conditions for constrained extrema
and multivariate parameter dependent integrals are derived. In the third chapter
a short outline of the basic concepts of asymptotic analysis is given. Then in the
fourth univariate and in the fifth multivariate Laplace type integrals are studied.
In the sixth these results are applied to normal random vectors. In the seventh
chapter it is shown that such approximations can be made also for non-normal
random vectors. In the last chapter then asymptotic approximations for crossing
rates of differentiable stationary Gaussian vector processes are derived.



