Kedar S. Namjoshi
Tomohiro Yoneda
Teruo Higashino
Yoshio Okamura (Eds.)

Automated Technology
for Verification
and Analysis

5th International Symposium, ATVA 2007
Tokyo, Japan, October 2007
Proceedings

LNCS 4762

@_ Springer

2] "Kedar S. Namjoshi Tomohiro Yoneda

2 0o / Teruo Higashino Yoshio Okamura (Eds.)

Automated Technology
tor Verification
and Analysis

Sth International Symposium, ATVA 2007
Tokyo, Japan, October 22-25, 2007
Proceedings

2 springer | [N

2007003598

Volume Editors

Kedar S. Namjoshi

Alcatel-Lucent

Bell Labs

600 Mountain Avenue, Murray Hill, NJ 07974, USA
E-mail: kedar @research.bell-labs.com

Tomohiro Yoneda

National Institute of Informatics

Information Systems Architecture Research Division
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: yoneda@nii.ac.jp

Teruo Higashino

Osaka University

Department of Information Networking

Graduate School of Information Science and Technology
Suita, Osaka 565-0871, Japan

E-mail: higashino @ist.osaka-u.ac.jp

Yoshio Okamura

Semiconductor Technology Academic Research Center (STARC)

17-2, Shin Yokohama 3-chome, Kohoku-ku, Yokohama 222-0033, Japan
E-mail: okamura.yoshio @starc.or.jp

Library of Congress Control Number: 2007937234

CR Subject Classification (1998): B.1.2, B.5.2, B.6,B.7.2,C.2,C.3,D.2,D.3, F3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-75595-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75595-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12173525 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4762

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1— 4143
please contact your bookseller or Springer

Vol.4767: FE. Arbab, M. Sirjani (Eds.), International Sym-
posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: F. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. XVI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Kriamer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007. -

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-
tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiere (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, I. Niemeli (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. XVI, 201 pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. X1, 469 pages. 2007.
Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky

(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Emst (Ed.), ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovi¢, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
X1, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part IIL. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part II. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part ITI. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I1. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.

)

Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program

Analysis and Compilation, Theory and Practice. X, 361

pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,
‘C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XTI, 233 pages. 2007.
Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),

Task Models and Diagrams for Users Interface Design.

XI, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and

Software, Verification and Testing. XII, 235 pages. 2007.
" Vol. 4379: M. Siidholt, C. Consel (Eds.), Object-Oriented

Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-

ing. XI, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:

Formal Specification and Development in B. XIII, 293
pages. 2006.

“~Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-

, alive Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Durdn, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B. Haverkort, M. Leucker, J. van de
Pol (Eds.), Formal Methods: Applications and Technol-
ogy. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.
Vol. 4326: S. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-

nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

=

Yo o

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-

gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol.4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Niez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. X VII,
721 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4214: C. Hofmeister, 1. Crnkovi¢, R. Reussner
(Eds.), Quality of Software Architectures. X, 215 pages.
2006.

Vol. 4204: F. Benhamou (Ed.), Principles and Practice of
Constraint Programming - CP 2006. XVIII, 774 pages.
2006.

Vol. 4199: O. Nierstrasz, J. Whittle, D. Harel, G. Reg-
gio (Eds.), Model Driven Engineering Lapnguages and
Systems. XVI, 798 pages. 2006.

Vol. 4192: B. Mohr, J.L. Triff, J. Worringen, J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XVI, 414 pages. 2006.

Vol. 4184: M. Bravetti, M. Niiiez, G. Zavattaro (Eds.),
Web Services and Formal Methods. X, 289 pages. 2006.
Vol. 4166: J. Gérski (Ed.), Computer Safety, Reliability,
and Security. XIV, 440 pages. 2006.

Vol.4158: L.T. Yang, H. Jin,J. Ma, T. Ungerer (Eds.), Au-
tonomic and Trusted Computing. XIV, 613 pages. 2006.
Vol. 4157: M. Butler, C.B. Jones, A. Romanovsky, E.

Troubitsyna (Eds.), Rigorous Development of Complex
Fault-Tolerant Systems. X, 403 pages. 2006.

A J

Preface

This volume contains the papers presented at ATVA 2007, the 5th International
Symposium on Automated Technology for Verification and Analysis, which was
held on October 22-25, 2007 at the National Center of Sciences in Tokyo, Japan.

The purpose of ATVA is to promote research on theoretical and practical
aspects of automated analysis, verification and synthesis in East Asia by provid-
ing a forum for interaction between the regional and the international research
communities and industry in the field. The first three ATVA symposia were held
in 2003, 2004 and 2005 in Taipei, and ATVA 2006 was held in Beijing.

The program was selected from 88 submitted papers, with 25 countries repre-
sented among the authors. Of these submissions, 29 regular papers and 7 short
papers were selected for inclusion in the program. In addition, the program
included keynote talks and tutorials by Martin Abadi (University of California,
Santa Cruz and Microsoft Research), Ken McMillan (Cadence Berkeley Labs),
and Moshe Vardi (Rice University), and an invited talk by Atsushi Hasegawa
(Renesas Technology). A workshop on Omega-Automata (OMEGA 2007) was
organized in connection with the conference.

ATVA 2007 was sponsored by the National Institute of Informatics, the
Kayamori Foundation of Information Science Advancement, the Inoue Foun-
dation for Science, and the Telecommunications Advancement Foundation. We
are grateful for their support.

We would like to thank the program committee and the reviewers for their
hard work and dedication in putting together this program. We would like to
thank the Steering Committee for their considerable help with the organization
of the conference. We also thank Michihiro Koibuchi for his help with the local
arrangements.

October 2007 Kedar Namjoshi
Tomohiro Yoneda

Teruo Higashino

Yoshio Okamura

Conference Organization

General Chairs

Teruo Higashino
Yoshio Okamura

Program Chairs

Kedar S. Namjoshi
Tomohiro Yoneda

Program Committee

Rajeev Alur

Christel Baier
Jonathan Billington
Sung-Deok Cha
Ching-Tsun Chou
Jin Song Dong

E. Allen Emerson
Masahiro Fujita
Susanne Graf
Wolfgang Grieskamp
Aarti Gupta

Teruo Higashino
Kiyoharu Hamaguchi
Moonzoo Kim

Orna Kupferman
Robert P. Kurshan
Insup Lee
Xuandong Li
Shaoying Liu
Zhiming Liu

Mila E. Majster-Cederbaum
Shin Nakajima

Akio Nakata

Kedar S. Namjoshi
Mizuhito Ogawa
Olaf Owe

Doron A. Peled
Mike Reed

Osaka University, Japan
STARC, Japan

Bell Labs, USA
National Institute of Informatics, Japan

University of Pennsylvania
University of Dresden

University of South Australia
Korea Advanced Inst. of Sci. and Techn.
Intel

National University of Singapore
University of Texas at Austin
University of Tokyo

VERIMAG

Microsoft Research

NEC Labs America

Osaka University

Osaka University

KAIST

Hebrew University

Cadence

University of Pennsylvania
Nanjing University

Hosei University

IIST /United Nations University
University of Mannheim
National Institute of Informatics
Hiroshima City University

Bell Labs

JAIST

University of Oslo

University of Warwick and Bar Ilan University
UNU-IIST, Macao

VIII Organization
Hiroyuki Seki
Xiaoyu Song
Yih-Kuen Tsay
Irek Ulidowski
Bow-Yaw Wang
Farn Wang

Yi Wang

Baowen Xu
Hsu-Chun Yen
Tomohiro Yoneda
Shoji Yuen
Wenhui Zhang
Lenore Zuck

Steering Committee

E. Allen Emerson
Oscar H. Ibarra
Insup Lee

Doron A. Peled

Farn Wang
Hsu-Chun Yen

Referees

Benjamin Aminof
Madhukar Anand
David Arney

Colin Atkinson
Louise Avila

Syed Mahfuzul Aziz
Noomene Ben Henda
Domagoj Babic
Hanene Ben-Abdallah
Armin Biere

Lei Bu

Lin-Zan Cai
Wen-Chin Chan
Yu-Fang Chen
Chunqging Chen
Zhenbang Chen
Chang-beom Choi
Jyotirmoy Deshmukh
Nikhil Dinesh

NAIST

Portland State University
National Taiwan University
University of Leicester
Academia Sinica

National Taiwan University
Uppsala University

Southeast University of China

National Taiwan University

National Institiute of Informatics

Nagoya University

Chinese Academy of Sciences
University of Illinois at Chicago

University of Texas at Austin, USA
University of California, Santa Barbara, USA
University of Pennsylvania, USA
University of Warwick, UK and

Bar Ilan University, Israel
National Taiwan University, Taiwan
National Taiwan University, Taiwan

Johan Dovland
Arvind Easwaran
Sebastian Fischmeister
Felix Freiling
Carsten Fritz

Guy Gallasch

Malay Ganai

Jim Grundy

Yi Hong

Reiko Heckel
Monika Heiner

Nao Hirokawa
Geng-Dian Huang
John Hakansson
Keigo Imai

Franjo Ivancic

Einar Broch Johnsen
Vineet Kahlon
Yuichi Kaji

Yunho Kim

Dmitry Korchemny
Piotr Kosiuczenko
Pavel Krcal
Keiichirou Kusakari
Marcel Kyas

Yuan Fang Li
Guogiang Li

Nimrod Lilith

Xinxin Liu

Lin Liu

Chi-Jian Luo

Yoad Lustig

Michael J. May
Christoph Minnameier
Van Tang Nguyen
Peter Csaba Olveczky
Geguang Pu
Zvonimir Rakamaric

Roopsha Samanta
Gerardo Schneider
Nishant Sinha
Martin Steffen
Volker Stolz

Ryo Suetsugu

Jun Sun

Yoshiaki Takata
Murali Talupur
Kai-Fu Tang
Ming-Hsien Tsai
Emilio Tuosto
Kazunori Ueda
Thomas Wahl

Organization

Chao Wang
Verena Wolf
Rong-Shiun Wu
Cong Yuan
Naijun Zhan
Miaomiao Zhang
Jianhua Zhao

IX

Table of Contents

Invited Talks

Policies and Proofs for Code Auditingt
Nathan Whitehead, Jordan Johnson, and Martin Abads

Recent Trend in Industry and Expectation to DA Research............
Atsushi Hasegawa

Toward Property-Driven Abstraction for Heap Manipulating
PIOGIAINS .+« ot vttt ettt ettt ettt ettt
K.L. McMillan

Branching vs. Linear Time: Semantical Perspective...................
Sumit Nain and Moshe Y. Vardi

Regular Papers

Mind the Shapes: Abstraction Refinement Via Topology Invariants
Jorg Bauer, Tobe Toben, and Bernd Westphal

Complete SAT-Based Model Checking for Context-Free Processes
Geng-Dian Huang and Bow-Yaw Wang

Bounded Model Checking of Analog and Mixed-Signal Circuits Using
A ST SOIVEL o v ve 55605 50 s ma s me amsms 85 8@ § 5575w 5 s ao e wsmorems
David Walter, Scott Little, and Chris Myers

Model Checking Contracts — A Case Study
Gordon Pace, Cristian Prisacariu, and Gerardo Schneider

On the Efficient Computation of the Minimal Coverability Set for Petri

Gilles Geeraerts, Jean-Francois Raskin, and Laurent Van Begin

Analog/Mixed-Signal Circuit Verification Using Models Generated
froi 'STMulation TLACES . w.mescs caims snims s@sRSEEEEains sxeEs ins e ew
Scott Little, David Walter, Kevin Jones, and Chris Myers

Automatic Merge-Point Detection for Sequential Equivalence Checking
of System-Level and RTL Descriptions.............t
Bijan Alizadeh and Masahiro Fujita

Proving Termination of Tree Manipulating Programs
Peter Habermehl, Radu Iosif, Adam Rogalewicz, and Tomas Vojnar

15

17

19

35

51

66

82

98

XII Table of Contents

Symbolic Fault Tree Analysis for Reactive Systems 162
Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo

Computing Game Values for Crash Games 177
Thomas Gawlitza and Helmut Seidl

Timed Control with Observation Based and Stuttering Invariant

Strategies 192
Franck Cassez, Alexandre David, Kim G. Larsen, Didier Lime, and
Jean-Francois Raskin

Deciding Simulations on Probabilistic Automata 207
Lijun Zhang and Holger Hermanns

Mechanizing the Powerset Construction for Restricted Classes of
W-AULOMALA . . 223
Christian Daz, Jochen Eisinger, and Feliz Klaedtke

Verifying Heap-Manipulating Programs in an SMT Framework 237
Zvonimir Rakamarié, Roberto Bruttomesso, Alan J. Hu, and
Alessandro Cimatti

A Generic Constructive Solution for Concurrent Games with Expressive
Constraints on Strategies 253
Sophie Pinchinat

Distributed Synthesis for Alternating-Time Logics.................... 268
Sven Schewe and Bernd Finkbeiner

Timeout and Calendar Based Finite State Modeling and Verification of
Real-Time Systems............ 284
Indranil Saha, Janardan Misra, and Suman Roy

Efficient Approximate Verification of Promela Models Via Symmetry

Markers 300
Dragan Bosnacki, Alastair F. Donaldson, Michael Leuschel, and
Thierry Massart

Latticed Simulation Relations and Games 316
Orna Kupferman and Yoad Lustig

Providing Evidence of Likely Being on Time: Counterexample
Generation for CTMC Model Checking 331
Tingting Han and Joost-Pieter Katoen

Assertion-Based Proof Checking of Chang-Roberts Leader Election in
L T T 347
Judi Romign, Wieger Wesselink, and Arjan Mooij

Table of Contents XIII

Continuous Petri Nets: Expressive Power and Decidability Issues....... 362
Laura Recalde, Serge Haddad, and Manuel Silva

Quantifying the Discord: Order Discrepancies in Message Sequence
CartS © oot et e et e e 378
Edith Elkind, Blaise Genest, Doron Peled, and Paola Spoletini

A Formal Methodology to Test Complex Heterogeneous Systems 394
Ismael Rodriguez and Manuel Ninez

A New Approach to Bounded Model Checking for Branching Time
TUOGICE &6 s s sims 558 @5 5 macm e waimimeeio e s oo wn wmsci @2 S REHE EHEGE M3V 410
Rotem Oshman and Orna Grumberg

Exact State Set Representations in the Verification of Linear Hybrid

Systems with Large Discrete State Space 425
Werner Damm, Stefan Disch, Hardi Hungar, Swen Jacobs,
Jun Pang, Florian Pigorsch, Christoph Scholl, Uwe Waldmann, and
Boris Wirtz

A Compositional Semantics for Dynamic Fault Trees in Terms of
Interactive Markov Chains 441
Hichem Boudali, Pepijn Crouzen, and Mariélle Stoelinga

3-Valued Circuit SAT for STE with Automatic Refinement 457
Orna Grumberg, Assaf Schuster, and Avi Yadgar

Bounded Synthesis 474
Sven Schewe and Bernd Finkbeiner

Short Papers

Formal Modeling and Verification of High-Availability Protocol for
Network Security Appliances i, 489
Moonzoo Kim

A Brief Tntroduction 10! THOTL s:as cnimscmems smsmmoms amans oo immnms 501
Mercedes G. Merayo, Manuel Ninez, and Ismael Rodriguez

On-the-Fly Model Checking of Fair Non-repudiation Protocols......... 511
Guogiang Li and Mizuhito Ogawa

Model Checking Bounded Prioritized Time Petri Nets 523
Bernard Berthomieu, Florent Peres, and Francois Vernadat

Using Patterns and Composite Propositions to Automate the

Generation of LTL Specifications. 533
Salamah Salamah, Ann Q. Gates, Viadik Kreinovich, and
Steve Roach

X1V Table of Contents

Pruning State Spaces with Extended Beam Search 543
Mohammad Torabi Dashti and Anton J. Wijs

Using Counterexample Analysis to Minimize the Number of Predicates
for Predicate Abstraction 553
Thanyapat Sakunkonchak, Satoshi Komatsu, and Masahiro Fugita

Author Index.......couiiiiiiniiiin e 565

Policies and Proofs for Code Auditing

Nathan Whitehead!, Jordan Johnson', and Martin Abadi':?

! University of California, Santa Cruz
2 Microsoft Research

Abstract. Both proofs and trust relations play a role in security deci-
sions, in particular in determining whether to execute a piece of code.
We have developed a language, called BCIC, for policies that combine
proofs and trusted assertions about code. In this paper, using BCIC, we
suggest an approach to code auditing that bases auditing decisions on
logical policies and tools.

1 Introduction

Deciding to execute a piece of software can have substantial security implica-
tions. Accordingly, a variety of criteria and techniques have been proposed and
deployed for making such decisions. These include the use of digital signatures (as
in ActiveX [12]) and of code analysis (as in typed low-level languages [5, 9, 10]).
The digital signatures can be the basis of practical policies that reflect trust
relations—for instance, the trust in certain software authors or distributors.
The code analysis can lead to proofs, and thereby to proof-carrying code [11].
Unfortunately, neither trust relations nor proofs are typically sufficient on their
own. Trust can be wrong, and code analysis is seldom comprehensive.

We are developing a system for defining and evaluating policies that combine
proofs and trusted assertions about code [18, 19, 20]. The core of the system
is a logical query language, called BCIC. BCIC is a combination of Binder [4],
a logic-programming language for security policies in distributed systems, with
Coq’s Calculus of Inductive Constructions (CIC) [3], a general-purpose proof
framework.

Whereas the focus of most previous work (including our own) is on the de-
cision to execute pieces of code, similar considerations arise in other situations.
For instance, from a security perspective, installing a piece of code can be much
like executing it. Further upstream, auditing code is also critical to security. Au-
diting can complement other techniques for assurance, in the course of software
production or at various times before execution. Although humans perform the
auditing, they are often guided by policies (e.g., what aspects of the code should
be audited) and sometime supported by tools (e.g., for focusing attention on
questionable parts of the code).

In this paper, using BCIC, we suggest an approach to code auditing that
bases auditing decisions on logical policies and tools. Specifically, we suggest
that policies for auditing may be expressed in BCIC and evaluated by logical
means. Thus, this approach leverages trust relations and proofs, but it also allows

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 1-14, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 N. Whitehead, J. Johnson, and M. Abadi

auditing to complement them. We recognize that this approach is still theoretical
and probably incomplete. Nevertheless, it emphasizes the possibility of looking
at techniques for verification and analysis in the context of policy-driven systems,
and the attractiveness of doing so in a logical setting.

We present two small examples. The first example concerns operating system
calls from an application extension language. With a BCIC policy, every oper-
ating system call must be authorized by an audit. A policy rule can allow entire
classes of calls without separate digital signatures from an authority. In the sec-
ond example, we consider an information-flow type system [14], specifically a
type system that tracks trust (much like Perl’s taint mode [6], but statically)
due to Orbaek and Palsberg [13]. The type system includes a form of declassi-
fication, in which expressions can be coerced to be trusted (that is, untainted).
If any program could use declassification indiscriminately, then the type sys-
tem would provide no benefit. With a BCIC policy, a trusted authority must
authorize each declassification. In both examples, security decisions can rely on
nuanced, fine-grained combinations of reason and authority.

We treat these examples in Sections 2 and 3, respectively. We consider imple-
mentation details in Section 4. We conclude in Section 5.

2 Example: Auditing Function Calls

In this example we consider the calling behavior of programs in a managed
environment of libraries. A base application may allow extensions that provide
additional functionality not only to the user but also to other extensions. The
extensions may come from many different sources, and accordingly they may
be trusted to varying extents. By constraining calls, the security policy can
selectively allow different functionality to different extensions.

2.1 Language

For simplicity, we study an interpreted extension language. Specifically, we use
an untyped A-calculus with a special call construct that represents operating
system calls and calls to other libraries. All calls take exactly one argument,
which they may ignore. In order to allow primitive data types, we also include a
representation for data constructors (constr0, constri, and constr2, for con-
structors that take zero, one, and two arguments respectively). These construc-
tors are enough to handle all the data types that appear in our implementation,
including natural numbers, pairs, and lists. Destructors have no special syntax,
but are included among the calls.
In Coq notation [2, 3, 16], the syntax of the language is:

Inductive exp : Set :=

| var : nat -> exp

| abs : exp -> exp

| app : exp -> exp -> exp

Policies and Proofs for Code Auditing 3

call : funcname -> exp —> exp

constr0 : constrname -> exp

constrl : constrname -> exp —> exp
constr2 : constrname —-> exp —> eXxp —> exp.

A detailed knowledge of Coq is not required for understanding this and other
definitions in this paper. This definition introduces a class of expressions, induc-
tively by cases with a type for each case; expressions rely on De Bruijn notation,
so variables are numbered and binding occurrences of variables are unnecessary.
Similarly, other definitions introduce other classes of expressions and proposi-
tions, and some parameters for them.

A policy can decide which calls any piece of code may execute. The policy
can be expressed in terms of a parameter audit maycall.

Parameter audit_maycall : exp -> funcname -> Prop.

According to this type, every audit requirement mentions the entire program
exp that is the context of the audit. Mentioning a subexpression in isolation
would not always be satisfactory, and it may be dangerous, as the effects of
a subexpression depend on context. The audit requirement also mentions the
name of the function being called. We omit any restrictions on the arguments to
the function, in order to make static reasoning easier; we assume that the callee
does its own checking of arguments. (Section 3 says more on going further with
static analysis.)

The predicate audited_calls indicates that a piece of code has permission to
make all the calls that it could make. This predicate is defined inductively by:

Inductive audited_calls : exp -> exp -> Prop :=
| audited_calls_var :
forall e n,
audited_calls e (var n)
| audited_calls_app :
forall e el e2,
audited_calls e el ->
audited_calls e e2 —>
audited_calls e (app el e2)
| audited_calls_abs :
forall e el,
audited_calls e el —>
audited_calls e (abs el)
| audited_calls_call :
forall f e el,
audited_calls e el ->
audit_maycall e £ ->
audited_calls e (call f el)

