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Preface

This volume contains the papers presented at ATVA 2007, the 5th International
Symposium on Automated Technology for Verification and Analysis, which was
held on October 22-25, 2007 at the National Center of Sciences in Tokyo, Japan.

The purpose of ATVA is to promote research on theoretical and practical
aspects of automated analysis, verification and synthesis in East Asia by provid-
ing a forum for interaction between the regional and the international research
communities and industry in the field. The first three ATVA symposia were held
in 2003, 2004 and 2005 in Taipei, and ATVA 2006 was held in Beijing.

The program was selected from 88 submitted papers, with 25 countries repre-
sented among the authors. Of these submissions, 29 regular papers and 7 short
papers were selected for inclusion in the program. In addition, the program
included keynote talks and tutorials by Martin Abadi (University of California,
Santa Cruz and Microsoft Research), Ken McMillan (Cadence Berkeley Labs),
and Moshe Vardi (Rice University), and an invited talk by Atsushi Hasegawa
(Renesas Technology). A workshop on Omega-Automata (OMEGA 2007) was
organized in connection with the conference.

ATVA 2007 was sponsored by the National Institute of Informatics, the
Kayamori Foundation of Information Science Advancement, the Inoue Foun-
dation for Science, and the Telecommunications Advancement Foundation. We
are grateful for their support.

We would like to thank the program committee and the reviewers for their
hard work and dedication in putting together this program. We would like to
thank the Steering Committee for their considerable help with the organization
of the conference. We also thank Michihiro Koibuchi for his help with the local
arrangements.

October 2007 Kedar Namjoshi
Tomohiro Yoneda

Teruo Higashino

Yoshio Okamura
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Policies and Proofs for Code Auditing

Nathan Whitehead!, Jordan Johnson', and Martin Abadi':?

! University of California, Santa Cruz
2 Microsoft Research

Abstract. Both proofs and trust relations play a role in security deci-
sions, in particular in determining whether to execute a piece of code.
We have developed a language, called BCIC, for policies that combine
proofs and trusted assertions about code. In this paper, using BCIC, we
suggest an approach to code auditing that bases auditing decisions on
logical policies and tools.

1 Introduction

Deciding to execute a piece of software can have substantial security implica-
tions. Accordingly, a variety of criteria and techniques have been proposed and
deployed for making such decisions. These include the use of digital signatures (as
in ActiveX [12]) and of code analysis (as in typed low-level languages [5, 9, 10]).
The digital signatures can be the basis of practical policies that reflect trust
relations—for instance, the trust in certain software authors or distributors.
The code analysis can lead to proofs, and thereby to proof-carrying code [11].
Unfortunately, neither trust relations nor proofs are typically sufficient on their
own. Trust can be wrong, and code analysis is seldom comprehensive.

We are developing a system for defining and evaluating policies that combine
proofs and trusted assertions about code [18, 19, 20]. The core of the system
is a logical query language, called BCIC. BCIC is a combination of Binder [4],
a logic-programming language for security policies in distributed systems, with
Coq’s Calculus of Inductive Constructions (CIC) [3], a general-purpose proof
framework.

Whereas the focus of most previous work (including our own) is on the de-
cision to execute pieces of code, similar considerations arise in other situations.
For instance, from a security perspective, installing a piece of code can be much
like executing it. Further upstream, auditing code is also critical to security. Au-
diting can complement other techniques for assurance, in the course of software
production or at various times before execution. Although humans perform the
auditing, they are often guided by policies (e.g., what aspects of the code should
be audited) and sometime supported by tools (e.g., for focusing attention on
questionable parts of the code).

In this paper, using BCIC, we suggest an approach to code auditing that
bases auditing decisions on logical policies and tools. Specifically, we suggest
that policies for auditing may be expressed in BCIC and evaluated by logical
means. Thus, this approach leverages trust relations and proofs, but it also allows
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auditing to complement them. We recognize that this approach is still theoretical
and probably incomplete. Nevertheless, it emphasizes the possibility of looking
at techniques for verification and analysis in the context of policy-driven systems,
and the attractiveness of doing so in a logical setting.

We present two small examples. The first example concerns operating system
calls from an application extension language. With a BCIC policy, every oper-
ating system call must be authorized by an audit. A policy rule can allow entire
classes of calls without separate digital signatures from an authority. In the sec-
ond example, we consider an information-flow type system [14], specifically a
type system that tracks trust (much like Perl’s taint mode [6], but statically)
due to Orbaek and Palsberg [13]. The type system includes a form of declassi-
fication, in which expressions can be coerced to be trusted (that is, untainted).
If any program could use declassification indiscriminately, then the type sys-
tem would provide no benefit. With a BCIC policy, a trusted authority must
authorize each declassification. In both examples, security decisions can rely on
nuanced, fine-grained combinations of reason and authority.

We treat these examples in Sections 2 and 3, respectively. We consider imple-
mentation details in Section 4. We conclude in Section 5.

2 Example: Auditing Function Calls

In this example we consider the calling behavior of programs in a managed
environment of libraries. A base application may allow extensions that provide
additional functionality not only to the user but also to other extensions. The
extensions may come from many different sources, and accordingly they may
be trusted to varying extents. By constraining calls, the security policy can
selectively allow different functionality to different extensions.

2.1 Language

For simplicity, we study an interpreted extension language. Specifically, we use
an untyped A-calculus with a special call construct that represents operating
system calls and calls to other libraries. All calls take exactly one argument,
which they may ignore. In order to allow primitive data types, we also include a
representation for data constructors (constr0, constri, and constr2, for con-
structors that take zero, one, and two arguments respectively). These construc-
tors are enough to handle all the data types that appear in our implementation,
including natural numbers, pairs, and lists. Destructors have no special syntax,
but are included among the calls.
In Coq notation [2, 3, 16], the syntax of the language is:

Inductive exp : Set :=

| var : nat -> exp

| abs : exp -> exp

| app : exp -> exp -> exp



Policies and Proofs for Code Auditing 3

call : funcname -> exp —> exp

constr0 : constrname -> exp

constrl : constrname -> exp —> exp
constr2 : constrname —-> exp —> eXxp —> exp.

A detailed knowledge of Coq is not required for understanding this and other
definitions in this paper. This definition introduces a class of expressions, induc-
tively by cases with a type for each case; expressions rely on De Bruijn notation,
so variables are numbered and binding occurrences of variables are unnecessary.
Similarly, other definitions introduce other classes of expressions and proposi-
tions, and some parameters for them.

A policy can decide which calls any piece of code may execute. The policy
can be expressed in terms of a parameter audit maycall.

Parameter audit_maycall : exp -> funcname -> Prop.

According to this type, every audit requirement mentions the entire program
exp that is the context of the audit. Mentioning a subexpression in isolation
would not always be satisfactory, and it may be dangerous, as the effects of
a subexpression depend on context. The audit requirement also mentions the
name of the function being called. We omit any restrictions on the arguments to
the function, in order to make static reasoning easier; we assume that the callee
does its own checking of arguments. (Section 3 says more on going further with
static analysis.)

The predicate audited_calls indicates that a piece of code has permission to
make all the calls that it could make. This predicate is defined inductively by:

Inductive audited_calls : exp -> exp -> Prop :=
| audited_calls_var :
forall e n,
audited_calls e (var n)
| audited_calls_app :
forall e el e2,
audited_calls e el ->
audited_calls e e2 —>
audited_calls e (app el e2)
| audited_calls_abs :
forall e el,
audited_calls e el —>
audited_calls e (abs el)
| audited_calls_call :
forall f e el,
audited_calls e el ->
audit_maycall e £ ->
audited_calls e (call f el)



