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OPTIMAL CONTROL



To Theresa and Christopher, who have opened my eyes
Frank Lewis

To my father, my first teacher
Vassilis Syrmos



PREFACE

This book is intended for use in a second graduate course in modern control
theory. A background in the state-variable representation of systems is as-
sumed. Matrix manipulations are the basic mathematical vehicle, and for those
whose memory needs refreshing, Appendix A provides a short review.

The book is also intended as a reference. Numerous tables make it easy to
find the equations needed to implement optimal controllers for practical ap-
plications.

Our interactions with nature can be divided into two categories: observation
and action. While observing, we process data from an essentially uncooper-
ative universe to obtain knowledge. Based on this knowledge, we act to
achieve our goals. This book emphasizes the control of systems assuming
perfect and complete knowledge. The dual problem of estimating the state of
our surroundings is briefly studied at the end of the book. A rigorous course
in optimal estimation is required to conscientiously complete the picture be-
gun in this text.

Our intention was to present optimal control theory in a clear and direct
fashion. This goal naturally obscures the more subtle points and unanswered
questions scattered throughout the field of modern system theory. What ap-
pears here as a completed picture is in actuality a growing body of knowledge
that can be interpreted from several points of view, and that takes on different
personalities as new research is completed.

We have tried to show with many examples that computer simulations of
optimal controllers are easy to implement and are an essential part of gaining
an intuitive feel for the equations. Students should be able to write simple
programs as they progress through the book, to convince themselves that they
have confidence in the theory and understand its practical implications.
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viii PREFACE

Relationships to classical control theory have been pointed out, and a root-
locus approach to steady-state controller design is included. A chapter on
optimal control of polynomial systems is included to provide a background
for further study in the field of adaptive control. Two chapters on robust
control are also included to expose the reader to this rapidly growing area of
interest.

The first author wants to thank his teachers: J. B. Pearson, who gave him
the initial excitement and passion for the field; E. W. Kamen, who tried to
teach him persistence and attention to detail; B. L. Stevens, who forced him
to consider applications to real situations; R. W. Newcomb, who gave him
self-confidence; and A. H. Haddad, who showed him the big picture and the
humor behind it all. We also want to thank our students, who forced us to
take the work seriously and become a part of it.

FrANK L. LEwIs

Fort Worth, Texas
January 1995

VassiLis L. SYrRmos

Honolulu, Hawaii
January 1995
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1

STATIC OPTIMIZATION

In this chapter we discuss optimization when time is not a parameter. The
discussion is preparatory to dealing with time-varying systems in subsequent
chapters. A reference that provides an excellent treatment of this material is
Bryson and Ho (1975), and we shall sometimes follow their point of view.

Appendix A should be reviewed, particularly the section that discusses
matrix calculus.

1.1 OPTIMIZATION WITHOUT CONSTRAINTS

A scalar performance index L(u) is given that is a function of a control or
decision vector u € R”. We want to select the value of u that results in a
minimum value of L(u).

To solve this optimization problem, write the Taylor series expansion for
an increment in L as

dL = L'du + Y du™ L, du + 0(3), (1.1-1)

uu

where O(3) represents terms of order three. The gradient of L with respect to
u is the column m vector

a oL
du

L

u

(1.1-2)

and the hessian matrix is



2 STATIC OPTIMIZATION

(n a u2 =

=X

L

(1.1-3)

L,, is called the curvature matrix. For more discussion on these quantities,
see Appendix A. Note that the gradient is defined throughout the book as a
column vector, which is at variance with some authors, who define it as a
rOwW vector.

A critical or stationary point occurs when the increment dL is zero to first

order for all increments du in the control. Hence
L, =0 (1.1-4)

for a critical point.
Suppose that we are at a critical point, so L, = 0 in (1.1-1). In order for
the critical point to be a local minimum, we require that

dL = § du" L, du + O(3) (1.1-5)

be positive for all increments du. This is guaranteed if the curvature matrix
L,, is positive definite,

uu

L. =10, (1.1-6)

If L, is negative definite, the critical point is a local maximum; and if L,
is indefinite, the critical point is a saddle point. If L, is semidefinite, then
higher terms of the expansion (1.1-1) must be examined to determine the type
of critical point.

Recall that L,, is positive (negative) definite if all its eigenvalues are pos-
itive (negative), and indefinite if it has both positive and negative eigenvalues,
all nonzero. It is semidefinite if it has some zero eigenvalues. Hence if
IL.| = 0, the second-order term does not completely specify the type of
critical point.

Example 1.1-1: Quadratic Surfaces
Let # € R* and

L) =+ u" [Z:' Z'] u+ s, s,)u (1
2 Fu"Qu + ST u. 2)

The critical point is given by
L,=Qu+§=0 (3)

or



1.1 OPTIMIZATION WITHOUT CONSTRAINTS 3

u* = —=Q°'S, 4)

where u* denotes the optimizing control.
The type of critical point is determined by examining the hessian

B = 0. (5)

The point u* is a minimum if L,, > 0, or (Appendix A) g,, > 0, ¢,,¢»» — ¢i>» >
0. It is a maximum if L, < 0, or ¢,, < 0, ¢,,¢»» — q3» > 0. If |Q| < 0, then u* is a
saddle point. If |Q| = 0, then u* is a singular point and we cannot determine whether
it is @ minimum or a maximum from L,,.

By substituting (4) into (2) we find the extremal value of the performance index to
be

L* = Lu*) = 387Q7'Q07'S — §7Q°'S
= —4S7Q"'S. ©)
Let
L:%MT[: ;]u+[0 1] u. 7
Then

- AL

is a minimum, since L, > 0. Using (6), we see that the minimum value of L is L* =
1

“The contours of the L(u) in (7) are drawn in Fig. 1.1-1, where u = [u, u,]". The
arrows represent the gradient

_ _|u tu,
Ly=Cut+8§= [u, + 2u, + 1]' ®)

Note that the gradient is always perpendicular to the contours and pointing in the
direction of increasing L(u). u

We shall use an asterisk to denote optimal values of u and L when we
want to be explicit. Usually, however, the asterisk will be omitted.
Example 1.1-2: Optimization by Scalar Manipulations

We have discussed optimization in terms of vectors and the gradient. As an alternative
approach, we could deal entirely in terms of scalar quantities.
To demonstrate, let

L(u,, u,) = 3ut + wu, + u3 + u,, (1)
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FIGURE 1.1-1 Contours and the gradient vector.

where u, and u, are scalars. A critical point occurs where the derivatives of L with
respect to all arguments are equal to zero:

dL
= —u 4+ u, =0, (2a)
au,
oL
o, =u, +2u, +1=0. (2b)

Solving these simultaneous equations yields

u, =1, u, = —1, 3)

so a critical point is (1, —1).
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Note that (1) is an expanded version of (7) in Example 1.1-1, so we have just
derived the same answer by another means.

Vector notation simplifies the bookkeeping involved in dealing with multidimen-
sional quantities, and for that reason it is very attractive for our purposes. |

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS

Now let the scalar performance index by L(x, u), a function of the control
vector u € R™ and an auxiliary (state) vector x € R". The problem is to select
u to minimize L(x, u) and simultaneously satisfy the constraint equation

flx, u) = 0. (1.2-1)

The auxiliary vector x is determined for a given u by the relation (1.2-1), so
that f is a set of n scalar equations, f € R".

To find necessary and sufficient conditions for a local minimum also sat-
isfying f(x, u) = 0, we shall proceed exactly as we did in the previous section,
first expanding dL in a Taylor series and then examining the first- and second-
order terms. Let us first gain some insight into the problem, however, by
considering it from three points of view (Bryson and Ho 1975, Athans and
Falb 1966).

Lagrange Multipliers and the Hamiltonian

At a stationary point, dL is equal to zero to first order for all increments du
when df is zero. Thus we require that

dL = LTdu + LTdx = 0 (1.2-2)
and
df = fdu + fdx = 0. (1.2-3)
Since (1.2-1) determines x for a given u, the increment dx is determined
by (1.2-3) for a given control increment du. Thus, the Jacobian matrix f, is
nonsingular and
dx = —f 'f.du. (1.2-4)
Substituting this into (1.2-2) yields
dL = (LY = LTf;'f,) du. (1.2-5)

The derivative of L with respect to « holding f constant is therefore given by
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aL

a = (L;l; - Ljf:lf;,)T = Lu - fo;TLx‘ (1'2_6)
u

df=0

where f.T means (f.')". Note that

aL

=L. 1.2-7
u ( )

dx=0

In order that dL equal zero to first order for arbitrary increments du when
df = 0, we must have

L, — fTf"L, = 0. (1.2-8)

This is a necessary condition for a minimum. Before we derive a sufficient
condition, let us develop some more insight and a very valuable tool by
examining two more ways to obtain (1.2-8).

Write (1.2-2) and (1.2-3) as

dL| _|LY LT||ldx]| _
[df]’[x f,,][du]_o‘ (1.2-9)

This set of linear equations defines a stationary point, and it must have a
solution [dxT du™]". The only way this can occur is if the (n + 1) X (n + m)
coefficient matrix has rank less than n + 1. That is, its rows must be linearly
dependent so there exists an n vector A such that

T T
[1 A7) [L-* L"] - D, (1.2-10)
X f;(
Then
LT+ ATf. =0, (1.2-11)
LT+ ATf, = 0. (1.2-12)

Solving (1.2-11) for A gives
AT = =LTf 1, (1.2-13)

and substituting in (1.2-12) again yields the condition (1.2-8) for a stationary
point.

It is worth noting that the left-hand side of (1.2-8) is the transpose of the
Schur complement of L} in the coefficient matrix of (1.2-9) (Appendix A).
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The vector A € R" is called a Lagrange multiplier, and it will turn out to
be an extremely useful tool for us. To give it some additional meaning now,
let du = 0 in (1.2-2), (1.2-3) and eliminate dx to get

dL = LTf ! df. (1.2-14)
Therefore

aL

= (LT H" = —A, 1.2-15
o (L:fD) ( )
so that — A is the partial of L with respect to the constraint holding the control
u constant. It shows the effect on the performance index of holding the control
constant when the constraints are changed.

As a third method of obtaining (1.2-8), let us develop the approach we
shall use for our analysis in subsequent chapters. Adjoin the constraints to
the performance index to define the Hamiltonian function

H(x, u, A) = L(x, u) + Af(x, u), (1.2-16)
where A € R” is an as yet undetermined Lagrange multiplier. To choose x, u,

and A to yield a stationary point, proceed as follows.
Increments in H depend on increments in x, #, and A according to

dH = HT dx + HY du + HT dA. (1.2-17)
Note that
oH
H, = ey = f(x, u), (1.2-18)

so suppose we choose some value of ¥ and demand that
H,=0. (1.2-19)

Then x is determined for the given u by f(x, u) = 0, which is the constraint
relation. In this situation the Hamiltonian equals the performance index:

H|_, = L. (1.2-20)
Recall that if £ = 0, then dx is given in terms of du by (1.2-4). We should

rather not take into account this coupling between du and dx, so it is con-
venient to choose A so that



