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PREFACE

This book is intended as an introduction to a broad range of practical
optimization techniques. It is designed for either self-study by professionals
or classroom work at the undergraduate or graduate level for students
who have a technical background in engineering, mathematics, or science.
Over the past four years, the book has served, at various stages of its develop-
ment. as the basis for several courses in optimization at Stanford University.
Like the field of optimization itself which involves many classical disci-
plines—particularly now with its emphasis on obtaining solutions to real
problems —the book should be useful to system analysts, operations re-
searchers, numerical analysts, management scientists, and other specialists
from the host of disciplines fron. which practical optimization applications
arc drawn. The prerequisites for convenient use of the book are relatively
modest; the prime requirement being some familiarity with introductory
clements of linear algebra. Certain sections and developments do assume
some knowledge of more advanced concepts of linear algebra, such as
cigenvector analysis, or some background in sets of real numbers, but the
text is structured so that the mainstream of the development can be faithfully
pursued without reliance on this more advanced background material.
Although the book is introductory in its level and scope of presentation,
it is simultancously intended to be modern in its approach, reflecting the
most recent trends in the foundations of the field. This point is of particular
significance since in the last few years these foundations have shifted quite
dramatically. A good deal of the modern work in the ficld. therefore, is
concerned not with development of advanced intricate techniques but with
development. at an introductory level, of the basic underpinnings of the field.
This new work signals the emergence of the ficld from a collection of isolated
theoretical results and heuristic tools into a solidly based discipline in which
theory guides the development of techniques. In the past, most of the
theory of optimization concentrated on the subject of optimality conditions,
and the practical methods of computation were attached to the theoretical
body as a somewhat nontheoretical appendage. In the modern setting,
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theory and practice are better integrated and we find enhanced interplay
between them.

A major connection between theory and practice is convergence
analysis—the analysis of how particular iterative solution techniques
generate points that converge to a solution of a given problem. In the past,
convergence analysis, like the appendage of computational methods to which
it applied, could at best be viewed as a series of formulae, which had more
relation to particular solution techniques than to problem definition and had
little coherence or structure. It is somewhat surprising now to find that
convergence theory is not only much more coherent than originally suspected,
but that it also helps provide a unifying framework for the field. In essence,
we have learned that studying the common properties of various solution
techniques for a problem is one of the most effective ways to illuminate the
fundamental properties of the problem itself.

The material in this book is organized into three separate parts. Part I
is a self-contained introduction to linear programming, a key component
of optimization theory. The presentation in this part is fairly conventional,
covering the main core of both the underlying theory of linear programming
and many of the most effective numerical algorithms. It does not, however,
cover those specialized areas of linear programming such as network flows
or transportation theory that rely on special structural characteristics.
Part II, which is independent of Part I, covers the theory of unconstrained
optimization, including both derivations of the appropriate optimality
conditions and an introduction to basic algorithms. This part of the book
explores the general properties of algorithms and defines various notions of
convergence. Part III extends the concepts developed in the second part to
constrained optimization problems. Except for a few isolated sections,
this part is also independent of Part I. It is possible to go directly into
Parts Il and III omitting Part I, and, in fact, the book has been used in this
way at Stanford on several occasions. Each part of the book contains
enough material to form the basis of a one-quarter course. In either classroom
use or for self-study, it is important not to overlook the suggested exercises
at the end of each chapter. The selections generally include exercises of a
computational variety designed to test one’s understanding of a particular
algorithm, a theoretical variety designed to test one’s understanding of a
given theoretical development, or of the variety that extends the presentation
of the chapter to new areas. One should attempt at least four or five exercises
from each chapter. In progressing through the book it would be unusual
to read straight through from cover to cover. Generally, one will wish to
skip around. In order to facilitate this mode, I have indicated sections of a
specialized or digressive nature with an asterisk*.

Development of this book would not have been possible without the
help of several individuals and institutions. My perception of linear pro-
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gramming was greatly enhanced while working with Adam Shefi, some of
whose work I have incorporated into Chapter 5. During the years of writing
this book I worked closely with Shmuel Oren, Daniel Gabay, Tsuguhiko
Tanahashi, and Verne Chant each of whose many suggestions and comments
are an integral part of the final product. I wish to thank Harvey Greenberg,
Arthur Geoffrion, and Dimitri Bertsekas, who each made several valuable
suggestions which were incorporated into the final manuscript. 1 wish to
acknowledge the Department of Engineering-Economic Systems at Stanford
University for supplying a stimulating atmosphere and much of the financial
assistance. The effort was also partially supported by the National Science
Foundation. [ wish to express special thanks to Elaine Christensen who
unfledgingly typed several drafts of the manuscript. Finally, as with most
textbooks of this type, much is owed to the many students who patiently
put up with the difficulties associated with an evolving manuscript and
unselfishly contributed to its successful completion.

Washington, D.C. D.G.L.
August 1972
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Chapter 1T INTRODUCTION

1.1 OPTIMIZATION

The concept of optimization is now well-rooted as a principle underlying
the analysis of many complex decision or allocation problems. It offers
a certain degree of philosophical elegance that is hard to dispute, and it often

offers an indispensable degree of operational simplicity.  Using this
optimization philosophy, one approaches a complex decision problem,
involving the selection of values for a numnh nterrelated variables. by
focussing attention on a single objective des: 1o quantfy performance

and measure the quality of the deciion.  This one objective 1s maximized
(or minimized, depending on the formulavion) subject to the constraints
that may limit the selection of decision variable values. If a suitable single
aspect of a problem can be isolated and characterized by an objective.,
be it profit or loss in a business sctting, speed or distance in a physical
problem, expected return in the environment of risky investments. or
social welfare in the context of government planning., optimization may
provide a suitable framework for analysis.

It 1s, of course. a rare situation in which 1t 1s possible 1o fully
represent all the complexities of variable interactions, constraints, and
appropriate objectives when faced with a complex decision problem.
Thus, as with all quantitative techniques  of analysis, a  particular
optimization formulation should only be regarded as an approximation.
Skill in modelling. to capture the essential elements of a problem, and good
judgment in  tie interpretation  of  results are  required to obtain
meaningful conclusions.  Optimization, then. should be regarded as a tool
of conceptualization and analysis rather than as a principle yielding the
philosophically correct solution.

Skill and good judgment, with respect to problem formulation and
interpretation of results, i1s enhanced through concrete practical experience
and a thorough understanding of relevant theory. Problem formulation
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itself ‘always involves a tradeoff between the conflicting objectives of
building a mathematical model sufficiently complex to accurately capture
the problem description and building a model that is tractable. The expert
model builder is facile with both aspects of this tradeoff. One aspiring to
become such an expert must learn to identify and capture the important
issues of a problem mainly through example and experience; he must learn
to distinguish tractable models from nontractable ones through a study of
available technique and theory and by nurturing the capability to extend
existing theory to new situations.

This book is centered around a certain optimization structure—that
characteristic of linear and nonlinear programming. Examples of situations
leading to this structure are sprinkled throughout the book, and these
examples should help to indicate how practical problems can be often
fruitfully structured in this form. The book mainly, however, is concerned
with the development. analysis, and comparison of algorithms for solving
general sub-classes of optimization problems. This is valuable not only
for the algorithms themselves, which enable one to solve given problems,
but also because identification of the collection of structures they most
effectively solve can enhance one’s ability to formulate problems.

1.2 TYPES OF PROBLEMS

The content of this book is broken down into three major parts: Linear
Programming, Unconstrained Problems, and Constrained Problems. The
last two parts together comprise the subject of nonlinear programming.

Linear Programming

Linear programming is without doubt the most natural mechanism for
formulating a vast array of problems with modest effort. A linear
programming problem is characterized, as the name implies, by linear
functions of the unknowns: the objective is linear in the unknowns, and the
constraints are linear equalities or linear inequalities in the unknowns.
One familiar with other branches of linear mathematics might suspect,
initially, that linear programming formulations are popular because the
mathematics is nicer, the theory is richer, and the computation simpler
for linear problems than for nonlinear ones. But, in fact, these are not the
primary reasons. In terms of mathematical and computational properties,
there are much broader classes of optimization problems than linear
programming problems that have elegant and potent theories and for which
effective algorithms are available. It seems that the popularity of linear
programming lies primarily with the formulation phase of analysis rather
than the solution phase—and for good cause. For one thing, a great number
of constraints and objectives that arise in practice are indisputably linear.
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Thus, for example, if one formulates a problem with a budget constraint
restricting the total amount of money to be allocated among two
different commodities, the budget constraint takes the form x; + x, < B,
where x;, i = 1,2, is the amount allocated to activity /, and B is the budget.
Similarly, if the objective is, for example, maximum weight, then it can be
expressed as wx; + w,x,, where w;, i=1,2, is the unit weight of the
commodity i. The overall problem would be expressed as

maximize W X; + W,X,
subjectto  x; + x, < B,
x; 20, x;,>20

which is an elementary linear program. The linearity of the budget
constraint is extremely natural in this case and does not represent simply
an approximation to a more general functional form.

Another reascn that linear forms for constraints and objectives are so
popular in problem formulation is that they are often the least difficult to
define. Thus, even if an objective function is not purely linear by virtue
of its inherent definition (as in the above example), it is often far easier to
define it as being linear than to decide on some other functional form and
convince others that the more complex form is the best possible choice.
Linearity, therefore, by virtue of its simplicity, often is selected as the
easy way out or, when seeking generality, as the only functional form that
will be equally applicable (or nonapplicable) in a class of similar problems.

Of course, the theoretical and computational aspects do take on a
somewhat special character for linear programming problems—the most
significant development being the simplex method. This algorithm is
developed in Chapters 2 and 3 and occupies most of the attention that we
devote to linear programming.

Unconstrained Problems

It may seem that unconstrained optimization problems are so devoid of
structural properties as to preclude their applicability as useful models of
meaningful problems. Quite the contrary is true for two reasons. First, it
can be argued, quite convincingly, that if the scope of a problem is broadened
to the consideration of all relevant decision variables, there may then be
no constraints—or put another way, constraints represent artificial
delimitations of scope, and when the scope is broadened the constraints
vanish. Thus, for example, it may be argued that a budget constraint is not
characteristic of a meaningful problem formulation; since by borrowing at
some interest rate it is always possible to obtain additional funds, and hence
rather than introducing a budget constraint, a term reflecting the cost of
funds should be incorporated into the objective. A similar argument
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applies to constraints describing the availability of other resources which at
some cost (however great) could be supplemented.

The second reason that many important problems can be regarded as
having no constraints is that constrained problems are sometimes easily
converted to unconstrained problems. For instance, the sole effect of
equality constraints is simply to limit the degrees of freedom, by essentially
making some variables functions of others. These dependencies can
sometimes be explicitly characterized. and a new problem having its number
of variables equal to the true degree of freedom can be determined. As a
simple specific example, a constraint of the form x, + x, = B can be
eliminated by substituting x, = B — x, everywhere else that x, appears
in the problem.

Aside from representing a significant class of practical problems. the
study of unconstrained problems, of course. provides a stepping stone
toward the more general case of constrained problems. Many aspects of both
theory and algorithms are most naturally motivated and verified for the
unconstrained case before progressing to the constrained case.

Constrained Problems

In spite of the arguments given above. many problems met in practice are
formulated as constrained problems. This is because in most instances a
complex problem such as, for example. the detatled production policy of
a giant corporation, the planning of a large government agency, or even
the design of a complex device cannot be directly treated in its entirety
accounting for all possible choices, but instead must be decomposed into
separate subproblems—each subproblem having constraints which are
imposed to restrict its scope. Thus. in planning problems. budget constraints
are commonly imposed in order to decouple that one problem from a more
global one.  Therefore, one frequently encounters general nonlinear
constrained mathematical programming problems.
The general mathematical programming problem can be stated as

minimize  f(x)

subjectto  hi(x) = 0, i=1,2,...,m
g <0, j=1,2..05r
xeS.

In this formulation, x is an #»-dimensional vector of unknowns,
X = (X, Xy, ...ox)and f i = 1,2, .. ompand g, j = 1.2, ..., rarereal-
valued functions of the variables x;, x,, ..., x,. The set S is a subset of
n-dimensional space. The function f is the objective function of the
problem and the equations, inequalities, and set restrictions are constraints.
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Generally, in this book. additional assumptions are introduced in order
to make the problem smooth in some suitable sense.  For example, the
functions in the problem are usually required to be continuous. or perhaps to
have continuous derivatives.  This ensures that small changes in x lead to
small changes in other values associated with the problem.  Also. the set S
1s not allowed to be arbitrary but usually 1s required to be a connected
region of n-dimensional space. rather than. for example. a set of distinct
isolated points.  This ensures that small changes in x can be made.
Indeed. in a majority of problems treated, the set S is taken to be the entire
space: there s no set restriction. .

In view of these smoothness assumptions. one might characterize the
problems treated in this book as continuous variable programming. since we
generally discuss problems where all variables and function values can be
varied continuously. In fact. this assumption forms the basis of many of
the algorithms discussed. which operate essentially by making a series of
small movements in the unknown x vector.

1.3 SIZE OF PROBLEMS

One obvious measure of the complexity of a programming problem is its
size. measured in terms of the number of unknown variables or the number
of constraints.  As might be expected. the size of problems that can be
cffectively solved has been increasing with advancing computing technology
and with advancing theory. Today. with present computing capabilities,
however, it is reasonable to distinguish three classes of problems:
small-scale problems having about five or less unknowns and constraints:
intermediate-scale problenis having from about five to a hundred variables:
and large-scale problems having on the order of a thousand variables and
constraints.  This classification is not entirely rigid. but it reflects at least
roughly not only size but the basic differences in approach that accompany
different size problems.

Much of the early theory associated with optimization, particularly
in nonlinear programming. is directed at obtaining necessary and sufficient
conditions satisfied by a solution poirt. rather than at questions of
computation. This theory involves mainly the study of Lagrange
multipliers. including the Kuhn-Tucker Theorem and its extensions. It
tremendously enhances insight into the philosophy of constrained
optimization and provides satisfactory basic foundations for other
important disciplines, such as the theory of the firm. consumer economics,
and optimal control theory. The interpretation of Lagrange multipliers
that accompanies this theory is valuable 1n virtually every optimization
setting.  As a theoretical basis for computing numerical solutions to
optimization. however, this early theory is applicable only to small-scale
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programming problems, because the equations resulting from the necessary
conditions can be efficiently solved directly only when the problem is small
enough for hand calculation.

If it is acknowledged from the outset that a given problem is too large
and too complex to be efficiently solved by hand (and hence it is
acknowledged that a computer solution is desirable), then one’s theory should
be directed toward development of procedures that exploit the efficiencies
of computers. In most cases this leads to the abandonment of the idea of
solving the set of necessary conditions in favor of the more direct procedure
of searching through the space (in an intelligent manner) for ever-improving
points. For the development and implementation of such search
procedures, the theory of necessary conditions is of little value in itself, but
as repeatedly demonstrated throughout this book, it forms the core of a more
complete theory that is applicable to such procedures.

Today, search techniques can be effectively applied to more or less
general nonlinear programming problems having on the order of 100 to 200
variables, and to linear programming problems having about 400 constraints
and 1000 variables. This range of problem that can be solved by a
computer with a search method we refer to as intermediate-scale
programming.

Problems of even greater size, large-scale programming problems, can
be solved if they possess special structural characteristics that can be
exploited by a solution method. The study of large-scale programming
consists of the identification of important special structures and the
development of techniques that exploit these structures. It is, therefore, a
more problem-dependent body of theory than the other theoretical aspects
of programming problems.

This book is devoted mainly to the theory of intermediate-scale
programming and therefore can be considered as focusing on the aspect of
general theory that is most fruitful for computation in the widest class of
problems. While necessary and sufficient conditions are examined and
their application to small-scale problems is illustrated, our primary interest
in such conditions is in their role as the core of a broader theory applicable
to the solution of larger problems. At the other extreme, although some
instances of structure exploitation are discussed, we focus primarily on the
general continuous variable programming problem rather than on special
techniques for special structures.

1.4 ITERATIVE ALGORITHMS AND CONVERGENCE

The most important characteristic of a high-speed digital computer is its
ability to perform repetitive operations efficiently, and in order to exploit
this basic characteristic, most algorithms designed to solve large
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optimization problems are iterative in nature. Typically, in seeking a vector
that solves the programming problem, an initial vector X, is selected and the
algorithm generates an improved vector x;. The process is repeated and a
still better solution x, is found. Continuing in this fashion, a sequence of
ever-improving points Xg.X;..... X, ..., 1s found that approaches a
solution point x*. For linear programming problems. the generated sequence
is of finite length, reaching the solution point exactly after a finite (although
initially unspecified) number of steps. For nonlinear programming
problems, the sequence generally does not ever exactly reach the solution
point, but converges toward it. In operation, for nonlinear problems, the
process is terminated when a point sufficiently close to the solution point,
for practical purposes, is obtained.

The theory of iterative algorithms can be divided into three (somewhat
overlapping) aspects.  The first is concerned with the creation of the
algorithms themselves. Algorithms are not conceived arbitrarily, but are
based on a creative examination of the programming problem, its inherent
structure, and the efficiencies of digital computers. The second aspect is the
verification that a given algorithm will in fact generate a sequence that
converges to a solution point. This aspect is referred to as global convergence
analysis, since it addresses the important question of whether the
algorithm, when initiated far from the solution point, will eventually
converge to it. The third aspect is referred to as /local convergence analysis
and is concerned with the rate at which the generated sequence of points
converges to the solution. One cannot regard a problem as solved simply
because an algorithm is known which will converge to the solution, since it
may require an exorbitant amount of time to reduce the error to an
acceptable tolerance. It is essential when prescribing algorithms that some
estimate of the time required be available. It is the convergence-rate aspect
of the theory that allows some quantitative evaluation and comparison of
different algorithms, and at least crudely, assigns a measure of tractability
to a problem, as discussed in Section I.1.

A modern-day technical version of Confucius’ most famous saying,
and one which represents an underlying philosophy of this book. might be,
“One good theory is worth a thousand computer runs’”. Thus the convergence
properties of an iterative algorithm can be estimated with confidence either
by performing numerous computer experiments on different problems
or by a simple well-directed theoretical analysis. A simple theory, of course,
provides invaluable insight as well as the desired estimate.

It is perhaps somewhat surprising that there does not yet exist a useful
convergence theory for the simplex method of linear programming, one of
the oldest and most important optimization techniques. This seems to be
due to the fact that, since convergence occurs in a finite number of steps, an
estimate of the total number of steps, rather than a rate of convergence,



