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Preface

This text is intended for use by students who have prior programming experience
in at least one high-level language such as Pascal, FORTRAN, or BASIC. 1t is
nonetheless our observation that most of the students who enter our assembly
language programming course—even those who profess to know three or four
high-level languages—do not really know what a computer is. Our primary goal is
to ensure that when they complete the course successfully, they will. There is a
certain something about having to take full responsibility for every (literal) bit of a
machine or assembly language program that no amount of practice with an
algebraic language can provide.

The secondary goal of an assembly language course is to enable its students to
attain reasonable fluency in a particular assembly language. Within reason, it does
not matter which assembly language is taught, both because there is a common
conceptual thread that runs through all of §Ehem and because, no matter which is
chosen, students are virtually certain to be confronted with a different one at some
later stage of their career. Because it provides such an excellent environment for
initiation to assembly language concepts, we have chosen to base this text on the
Digital Equipment Corporation’s VAX assembly language running under the VMS
operating system.

There are many texts that teach VAX assembly language but, if we have
attained our goal, none like this one. Our approach is to emphasize just those
classes of instruction that are likely to have counterparts on other computers that
students might encounter. Very specialized instructions such as those that evaluate
polynomials, manage queues, or emulate Pascal case statements are treated briefly
in Chapter 14, which can be omitted if time is short.

A concern that we have with competitive texts is their surprising lack of
programming problems. Most are full of small esoteric questions as to what bit
pattern will result from such and such a combination of instructions, but one must
look long and hard to find a substantive dnd challenging programming assignment.
Since we are firm believers that students must learn by doing, this text contains far
more programming problems and relatively fewer short-answer questions than
most other VAX texts. This book has enough problems to allow the instructor to
assign 10 to 12 per semester and yet be able to vary the assignments from semester
to semester.

The text begins by describing the architecture of a simplified 10-instruction
computer called VAXINE, a “little VAX” that is an abstraction of its more complex
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Preface

progenitor. Then, in keeping with our stated primary objective that students finally
learn what a computer is, they are asked to write a bit-faithful simulator for
VAXINE in a high-level language of their choice. We strongly advise that this
assignment not be skipped. VAXINE was not invented in some misguided attempt
to protect the student from a too-early exposure to the full complexity of the VAX.
The objective is not to make students write programs that are processed by a
simulator supplied by the instructor, but rather to make students write their own
simulator to run programs written by the instructor. The students who do this
successfully—and most will—cannot fail but gain an appreciation for the basic
interpretive cycle and operand addressing modes that form the fundamental basis
for digital computation. This first assignment, a simulator, and the last assignment,
chosen from those in Chapter 13, are the heart and soul of the text.

The final goal of this text is that it be a reasonably complete reference to the
entire VAX instruction repertoire and to the VAX MACRO assembler. For this
reason, we have included a large number of appendices and have also given
complete formal definitions of all commands and macros as they were introduced.
To highlight and differentiate between these formal definitions, we have placed
those for commands in square-cornered boxes

Formal definition of a VAX command.

and those for macros in round-cornered boxes

Formal definition of a VAX or VAL macro.

Some students who are reasonably adept at using BASIC or Pascal never do
learn to cope with a tool as precise, demanding, and unforgiving as an assembler,
but those who do usually report that working in such a medium is a stimulating
intellectual adventure and great fun. We think so too, and so we have done our best
to write in a style that lets that belief show through. Let the adventure begin.

F.D.F.
ED.R.
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Digital Computers

Von Neumann was a great mathematician and had the
reputation at that time of being the cleverest man in
the world. He was supposed to be the intellectual force
driving the whole development of computers. He was a
great thinker and a great entrepreneur. And yet he to-
tally misjudged the role that computers were to play in
human affairs.

— FREEMAN DYSON
Infinite in All Directions

Just as the proverbial blind men gave very different descriptions of an elephant, de-
pending on which of its parts each was able to examine, there are many different
answers to the question “What is a digital computer?” To the electrical engineer, it
is the collection of circuitry that does the computer’s fundamental arithmetic and
logical operations. To the motor vehicle clerk, the computer appears to be a special-
purpose device that keeps track of car and driver licenses. To the Pascal or
FORTRAN programmer, it is an algebraic engine that seems to know how to evalu-
ate formulas. This chapter will introduce yet another view, namely, that a digital
computer is a faithful servant that will, indefinitely and without tiring and without
error, execute a sequence of commands, each of which is chosen from a well-defined
repertoire.

This chapter will examine the fundamental principles of how stored-program
digital computers work in general and how a simple one is programmed in
particular and will suggest that the best way to master such a computer’s functions
is to simulate that computer by using a high-level language program of the
student’s own creation.



2 Digital Computers

1.1 Fundamental Principles of a Digital Computer

Memory

T

cPy
Input Unit Control Unit Output Unit

ALU IDU

Figure 1.1 The Principal Components of a Stored-Program Digital Computer

Schematically, at least, a typical digital computer consists of the components shown
in Figure 1.1. Data read from an input unit—perhaps the keyboard of a terminal or
personal computer—is stored temporarily in the computer’s memory. This input
data is processed by the electronic circuits of the arithmetic and logic unit (ALU) in
the central processing unit (CPU), according to a sequence of instructions called a
program. The results from the programmed computation are then sent to an output
unit—perhaps a printer or the display screen of a terminal or personal computer.

In the earliest days of digital computation—up through 1940 or so—program
instructions were fed to the computer, obeyed, and discarded. The only way that an
identical sequence of instructions could be repeated was to reenter the sequence
through the input device. Beginning early in the 1940s, it occurred to several people
independently that the instructions could be read just once and stored in memory
just as if they were data and that important benefits could be derived from doing so.
Computers that can do this are called stored-program computers or, after one of these
early leaders, von Neumann computers. Thus the CPU of a stored-program computer
must contain—in addition to the ALU—a control unit that determines the sequence
in which the instructions and data are selected from memory and also an instruction
decoding unit (IDU) which decodes the digits of an instruction to determine what the
ALU is to do.

Virtually all modern digital computers store their data (numbers, instructions,
etc.) and do their arithmetic and other operations in the binary number system, but
this observation is not crucial to understanding the fundamental principles of
stored-program digital computation. We can explain these principles just as well in
the more familiar decimal number system; binary notation can wait for Chapter 2.



Fundamental Principles of a Digital Computer 3

Computer Memory

Regardless of the arithmetic system used, both instructions and data are stored in a
memory that has certain characteristics. The memory has both a width, which is re-
lated to the precision of the data it can store, and a depth, which is proportional to
the number of data values it can store. Each data value occupies a unit of memory
called a word, and each word is given a unique location or address, a number that
ranges from zero for the first address up to some maximum value, the address of
the last word. Figure 1.2 shows two different ways in which the memory of a hypo-
thetical 10-decimal-digit computer might be arranged. When we learn the
architecture of a new computer, we must learn what scheme is used with that partic-
ular design. The computer’s design engineer thooses the addressing scheme, and
we can only react to it.

Address Content Address Content Address
00 +3418435437 01 +34184 +35437 00
01 -6540398821 03 -65403 -98821 02

02 -8720211058 05 -87202 -11058 04
03 +0000000003 ;
04 +2045768109

49 +6482947082 99 +64829 +47082 98

99 +5657000034

a. One hundred sequentially numbered b. One hundred sequentially numbered
cells of a word-addressable machine. cells of a halfword-addressable ma-
Each cell contains one word (depth—100 chine. Each cell contains a halfword
words)” (depth—50 words or 100 halfwords).

Figure 1.2 Two Alternative Designs for a Small Memory

As we can see from Figure 1.2, it is sometimes necessary to distinguish a word from
a cell. Cells are the units of memory that are given sequential addresses, whereas
words are the combinations of one or more consecutive cells that hold the operands
that can be processed with the most common arithmetic commands: add, subtract,
and (perhaps) multiply and divide. In Figure 1.2a, words are given sequential ad-
dresses, so with that memory arrangement, a cell is a word (or more precisely, a cell
is said to hold one word of data). In Figure 1.2b, halfwords are given sequential
addresses, implying that there are commands to manipulate data expressed in half-
words as well as word instructions that manipulate the two cells needed to hold one
10-digit word of data. Using a lower-numbered (even) address for the least signifi-
cant half of a number (right halfword) and the next higher-numbered (odd) address
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for the most significant half (left halfword) is a convention that we will see again on
the Digital Equipment Corporation (DEC™) VAX™.

Note that an address is not related to the content of that address. In Figure 1.2a,
cell 03 happens to contain a 3, but that is merely a coincidence. Other cells contain
numbers clearly unrelated to their address. Cell zero, for example, contains
+3418435437. Now, just what is the significance of that sequence of digits? Might it
be the large number 3,418,435,437? Or might it be a coded instruction that tells the
computer to do something? The answer is that we can't tell yet. If that part of the
computer called the control unit in Figure 1.1 sends that digit sequence to the
arithmetic and logic unit, then the sequence will be processed as if it were the large
number quoted. But if it sends the same sequence to the instruction decoding unit,
the ten digits will be torn apart and interpreted as instructions according to some
scheme that we must learn for each new digital computer we seek to program.

Not only can’t we tell the significance of the +3418435437 without being given
more information, but also the same sequence can be processed as data during one
phase of a program and later be interpreted as an instruction. What might that in-
struction be? Let’s describe one possibility. Suppose that the first two digits specify
which of 100 different commands is to be obeyed and that command 34 is the ADD
command. What is to be added? That information must be conveyed by the remain-
ing digits of the instruction. Are we to add 18 + 43 + 54 + 37? 1843 + 5437? Probably
neither, because stored-program computers are much more flexible. The operands
(data to be operated upon) of the ADD are not usually embedded in the instruction
itself but, rather, are stored at the memory addresses specified in the ADD instruc-
tion. This computer, for example, might process the instruction as meaning “Add
the contents of cell 18 to the contents of cell 43; place the sum in cell 54; and then tell
the control unit to fetch the next instruction from cell 37.” A computer that worked
that way would be called a four-address computer.

Are all four operand addresses needed? Not the last one, certainly. The design
described would allow a program to hop all over memory, making it very hard for
the human (but not the computer) to understand it. Any programmer using such a
machine would probably put sequential instructions in sequential memory cells and
deviate from this only when necessary to permit the program to take alternative
paths depending on the input data or the results of previous calculations. More
often the programmer would dispense with the fourth operand (reducing the word
size to eight digits: +34184354), with the understanding that when the instruction
being processed is finished, this three-address computer will go automatically to the
next address in sequence. This sequence is normally cyclic, so when the machine has
just finished executing the instruction at 99, it will go to 00 to find the next one. But
suppose we occasionally want to break such a uniform sequence; what can we do?
The need to do this occurs quite often, so the instruction repertoire of any computer
will include commands that tell the computer to take its next instruction from what-
ever new address we specify, either unconditionally (always jump) or conditionally,
depending on whether some number is zero, nonzero, or larger or smaller than
some other number. Such jumps are also called branches, conveying the idea of a
fork in a path at which point a decision must be made as to which branch to follow.
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Now let’s see whether we really need three operand addresses. In the scheme
just described, the third address tells where to put the sum of the first two oper-
ands. But using a new memory cell is a luxury. The design could just as well force
us to put the sum on top of one of the operands being summed. “On top of” doesn’t
give quite the right connotation. When a number is written to a specified memory
cell, its former contents are lost, and we do not have to clear (set to zero) the desti-
nation address before overwriting it. The new instruction, +341843, would fit in a
six-digit word and mean “Add the contents of cell 18 to the contents of cell 43 with
the result going back into cell 43.” Of course, on such a two-address computer, one of
its operands is destroyed, and if we do not want to lose that operand, we make a
copy of it before the add. The ability to copy the contents of one cell to another is al-
ways one of the primitively available commands in the machine’s repertoire.

There are also one-address and even zero-address computers, but we have gone
far enough here to establish the background for the general principle that the
computer architect has considerable freedom in designing a computer and that we
must learn the details of that design before we can write effective programs.

Precision Versus Accuracy

In a two-address computer that stores one word per cell, the memory would look
something like that shown in Figure 1.3.

- Address  Content
00 +341843

01 +654039

02 -872021

PC — 03 +204783
04 +308971

99 +565700

Figure 1.3 A 100-Cell Six-Digit-Word Memory

If we accept the efficacy of the two-address scheme, we can program this com-
puter almost as easily as if it were a three-address computer; yet something has
been lost. When the contents of a given cell is taken to be a data value, that six-digit
value is intrinsically less precise than is its earlier eight-digit counterpart. Does this
mean that a computer of this design is inherently less accurate? That’s another mat-
ter. Accuracy is freedom from error. As long as we don'’t try to add numbers whose
sum exceeds 999,999, a computer of this design can be perfectly accurate. But the
available precision—six digits rather than the former eight or ten—certainly limits at-
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tainable accuracy because we can no longer add two six-digit numbers with the as-
surance that their sum will fit into one of our cells. There are ways to program
around such limitations to precision, but their elaboration will be deferred until
later in this book.

Running a Program

We have stated that without additional information, it is impossible to tell whether
the contents of a given computer word is to be processed as a data value or inter-
preted as an instruction. But what is that additional information? The question is
equivalent to our asking how the control unit “decides” to send a word to the
arithmetic and logic unit or to the instruction decoding unit. The method used is
quite simple.

Note that in Figure 1.3, the symbol PC is pointing to a particular one of the
computer’s 100 words, cell 3. PC stands for program counter and is itself a little piece
of memory storage that is just big enough to hold an address—two digits in this
case. The PC is a special kind of memory cell called a register and is part of the
control unit, not part of addressable main memory. Having the PC point to cell 3 is
just a way of showing visually that the program counter currently contains the ad-
dress 03. For a related reason, memory addresses are sometimes called pointers, be-
cause they point to some particular piece of information of current interest. In this
case, the PC is saying to cell 3, “You are next,” meaning that its contents—
+204783—is to be sent to the instruction decoding unit. Just after doing so, but be-
fore actual decoding, the PC is advanced to point to the next cell, 4 in this case. If the
instruction at cell 3 does not cause a branch (a change in value of the PC), the next
instruction to be executed will be taken from cell 4. This process can be summarized
as follows:

—> Fetch the instruction whose address is in the PC
Increment the PC so it points at the next instruction
Decode the instruction fetched in step 1
Execute that instruction

—— Loop back to step 1

Once started, the computer continues to execute this loop indefinitely until someone
pulls the plug (or until one of the decoded instructions says halt). The instruction
decoded may be a branch instruction that changes the PC and thus overrules the in-
crementation by 1 at step 2, but the computer doesn’t care; it just goes back to step 1
and takes its next instruction from wherever the current value of the PC indicates.

To understand machine language programming in further detail, we need to
refer to a particular computer design and its associated instruction repertoire. That
is the purpose of the next section.



