Program

OPEN PRINTER
DEVICE

J. TERRY GOPFREY

min

the ()S /%
Kernel

PRINTER ARRAY

N

| merement CLOSE PAINTER |

|__unecount | DEVICE
LOAD exit

PUBLIC SYSTEMBUS

T

PRIVATE SYSTEM BUS

INCREMENT
ROW POINTER

PRINTER BUFFER |

‘ LFacR

POSITION 640

s

‘w«:ntuem BUFFER |

PRIVATE PROCESSING
i ‘ I ! 5 woouE
1 i |
[f
pAvaTE | o | | Bus | = 8US SYSTEM
| contROLLER ‘ F—T contROuER [P | 026 <5 conrouen O S Leay
| L | ‘
| svstemio
< N| e e
LOCAL BUS L
‘ J [. PROCESSING
DIRECT =
‘ ‘ MEMORY | | PROCESSOR v e MODULE
ACCESS (DWA) | EXTENSION | [. —
| iy < b

CONTROLLER |

Programming
the OS/2 Kernel

J. Tenry Godfrey

President, JTG Associates

PRENTICE HALL
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Godfrey. J. Terry
Programming the D0S/2 kernel / J. Terry Godfrey.
p. cm.
ISBN 0-13-723776-6
1. DS/2 (Computer operating system) I. Title.
QA76.76.083G63 1991
005.4'468--dc20 90-7518
CIP

Editorial/production supervision and
interior design: Kathleen Schiaparelli
Cover design: Wanda Lubelska
Manufacturing buyer: Lori Bulwin/Linda Behrens/Patrice Fraccio

= © 1991 by Prentice-Hall, Inc.
= A Division of Simon & Schuster

Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regarc
to these programs or the documentation contained in this book. The author and publisher shall not be
liable in any cvent for incidental or conscquential damages in conncction with, or arising out of, the
furnishing, performance, or use of thesc programs.

UNIX is a registered trademark of AT&T (Bcll Laboratories).

Apple and Maclntosh are registered trademarks of Apple Computer, Inc.

Intel is a registered trademark of Compuvicw Products, Inc.

Microsoft Window is a trademark and Microsoft is a registcred trademark of the Microsoft Corporation.
IBM and IBM PC/XT/AT are registered trademarks of International Business Machines Corporation.

All rights reserved. No part of this book may be reproduccd, in any form or by any mecans, with
permission in writing from the publisher.

Printed in the United States of America

10 9 87 65 43 21

ISBN 0-13-72377bk-b

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Programming
the OS/2 Kernel

To Judy, Ray, Agnes, and Emma

Preface

This book has been developed for teaching programming using the IBM Operating
System/2 (0S/2). It is suitable for a one-semester course in OS/2, as an adjunct to
a course in operating system design, or as a vehicle for self-study on OS/2 program-
ming. The emphasis in the book is on programming techniques for an advanced
multitasking microcomputer operating system. Both Macro Assembler/2 and the C
language are supported in the text. The OS/2 Application Programming Interface
(API) services can be understood in either context.

The text addresses the basic OS/2 kernel services: the video (Vio), Disk
Operating System (Dos), keyboard (Kbd), and mouse (Mou) API functions. The
latter service is most useful in a windowed display such as the Presentation Man-
ager, which is omitted from this text. The book concentrates on the OS/2 Full-
Screen Command Mode, which utilizes the entire display for presentation of a single
program, making no other programs visible. Similarly, input and output under pro-
gram control is implemented through the standard assembler or C syntax, such as
printf() or scanf(). These operate in Protected Mode as well as Real Mode. Conse-
quently, there is little need to incorporate specific keyboard API services into the
program examples. Keyboard and mouse functions are discussed briefly in Appen-
dix D. Some use is made of the keyboard services, for example, to pause the graph-
ics screen.

The Presentation Manager windowed interface is not developed in this book.
Although this is a rich and complex interface, it is not considered suitable for a one-

xi

xii Preface

semester course on OS/2 programming. The services at the level of IBM’s OS/2
Standard Edition 1.0 are assumed as sufficient material for such an introductory
course. When object-oriented programming tools become available for the Presenta-
tion Manager and the burden for programming this interface is eased, it will be ap-
propriate in a beginning course in OS/2 programming.

During the late 1980s when OS/2 was developed, the principal major compet-
ing operating system for advanced microcomputer applications was UNIX. OS/2
follows IBM’s earlier microcomputer operating system, Disk Operating System
(DOS), and runs DOS as a subset. UNIX has tended to be used more within the
scientific and engineering community and is generally optimized for larger machines
than the baseline microcomputers developed during this time frame.

What are the advantages afforded by OS/2? OS/2 is predominantly a multi-
tasking operating system capable of extensive memory management. It accomplishes
these activities through hardware intervention based on the Intel 80286 chip set.
(Hardware compatibility exists at the 80386 and 80486 levels.) There are four lev-
els of protection provided (unlike the Motorola 68020 and 68030, for example,
which have two); hence OS/2 can be tailored to handle the multitasking problem.
The protection mechanisms provide coarse-grained through fine-grained memory
management. This allows a detailed dynamic memory allocation at any given time.

If we examine OS/2 in the framework of the near-term evolution of microcom-
puter systems (1990s), it is apparent that changes in software development and
applications will dictate about an order-of-magnitude increase in software complex-
ity. It is clear that many efforts will give way to multithread and multiprocessor pro-
gramming. The OS/2 multitasking features make it a good candidate for major
microcomputer applications during the 1990s time frame. Also, the hardware protec-
tion mechanisms mentioned above are suited for minimizing operational errors in
such multitasking situations. Hence OS/2 is positioned to become the operating
system of choice for high-end personal computer applications based on the Intel chip
sets.

OS/2 is particularly suited for user-friendly operation and programming. The
API services are readily programmed in a fashion similar to the now-more-familiar
Basic Input Output System (BIOS) interrupt calls. The Presentation Manager repre-
sents a large-scale object-oriented interface. It is programmed in an almost identical
manner to the Microsoft Windows Software Development kit (SDK) programming.
0S/2 is moving rapidly toward widespread acceptance as the IBM microcomputer
operating system for the early 1990s, just as DOS was for the 1980s.

This book is intended to teach techniques on how to program in an advanced
multitasking environment. The approaches required for software development reflect
the solutions and compromises that exist in the 80286 hardware and the OS/2 Pro-
tected Mode software. The power of OS/2 lies in its potential to run a number of
large-scale applications simultaneously, with asynchronous and synchronous sharing
of data. The use of pipes, queues, and semaphores (as well as shared memory
blocks) ensures that intertask communication minimizes errors and follows well-
established guidelines.

Preface xiii

0S/2 is large, but experience has demonstrated a rather elegant superstructure
that combines Microsoft Windows, DOS, multitasking, and memory management.
Even in the scaled-down 80286 environment, OS/2 presents a very user-friendly
interface to the hardware. Finally, all the programming skills developed for the
earlier DOS framework are applicable when writing software for OS/2. IBM and
Microsoft have maintained many philosophical features of DOS while incorporating
the Apple Maclntosh-like graphical interface in PM. OS/2 is truly an order-of-
magnitude change in microcomputer operating systems. The potential for large-scale
object-oriented applications is intrinsic to the PM definition.

This, then, is the world of OS/2 as we move through the 1990s. The reader
can expect a programming arena in which multitasking is important. This is a pre-
cursor to the parallel processing systems coming toward the end of the decade. At
the same time, implementation of segmented large-scale applications becomes a
reality through interprocess communications and memory management. Thus effi-
cient use of microcomputer resources becomes feasible. Finally, graphical interface
techniques lead to very user-friendly application environments. OS/2 promises to be
at the forefront of microcomputer operating systems because of all these features.

One comment about the style used in this book. The IBM macro calls to the
Application Program Interface (API) are used throughout. This is in keeping with the
trend toward higher-level-language constructs and structured code when developing
assembler programs. It does have the effect of obscuring the stack loading during an
API call and assumes that the reader has access to the IBM API macros (i.e., the
IBM Toolkit include files). The trade-off, however, is that fewer lines of program
code need to be understood, and for someone familiar with the calls, the inferences
are clear. This has implications for maintenance as well as debugging.

This text is practically oriented. The examples are somewhat lengthy, by inten-
tion and as a real-world case would be. They are intended for the serious student
who is interested in programming under OS/2. The Color Graphics Adapter mode
(CGA) is illustrated because of its relative simplicity and ease of programming.
Also, it is a readily testable feature that can easily be programmed using C or as-
sembler. The book assumes that the student has a basic familarity with C and as-
sembler.

ACKNOWLEDGMENTS

As is to be expected, a great many people contributed to this book both knowingly
and unknowingly. It is impossible to give credit in all cases; however, a few notable
exceptions are my wife, Judy, who did all the typing and much of the editing;
Marcia Horton, Editor-in-Chief at Prentice Hall, who was always available to answer
questions and provide inputs; Ray and Agnes, my parents, who laid the groundwork
for this book years ago, and Emma, Judy’s mother, who provided both of us with
a sense of stability. Thanks to Kathleen Schiaparelli and her staff for their excel-
lent job producing the book.

xiv

Finally, special mention should be made of the help I received on BIX, Byte
Magazine’s bulletin board, for those unanswerable questions that plague every
programmer and can be answered only by someone else. Like many other forums,
BIX is an excellent place to go for answers because of the depth and breadth of ex-
perience displayed by its membership. Also, the thoughtful comments provided by
Margaret Mooney added a new perspective.

Contents

PREFACE xi
1 | Introduction to 0S/2 1
1 THE 0S/2 ENVIRONMENT 1

1.1 Hardware Considerations 3

1.2

1.3
1.4

1.1.1 The 80286 and 80386 Architecture, 3
1.1.2 Hardware Operation for Protected Mode, 8
1.1.3 Software Operation for Protected Mode, 12

A Brief Look at Operating System/2 14

1.2.1 Protected Mode, 17

1.2.2 API Services, 19

1.2.3 Memory Management, 29

1.2.4 Multitasking, 29

1.2.5 Version 1.0 and 1.1 Differences, 30

The OS/2 Presentation Manager 31
Summary 35

References 36

Problems 37

vil

vili Contents

Part I Programming OS/2 Using Assembler 40
2 INTRODUCTORY OS/2 ASSEMBLER
PROGRAMMING 40

2.1 0OS/2 Services: Accessing the API 40
2.2 Introductory Assembler Programming 43

2.2.1 The IBM Macro Assembler/2, 43
2.2.2 An Example Program: Printer Control, 45

2.3 Accessing the Video Services 51

2.3.1 The Display Buffer, 51

2.3.2 Locking the Screen Context, 54

2.3.3 Printing the Graphics Screen under

0S/2, 62

2.3.4 Connecting Line Graphics with OS/2, 74
2.4 Software Design 87
2.5 Summary 88

References 89

Problems 89

3 MEMORY MANAGEMENT AND MULTITASKING
WITH ASSEMBLER 93

31 Memory Management and Multitasking 93
3.2 Memory Management Activities 96

3.2.1 Creating and Accessing Memory Segments, 96
3.2.2 Creating and Accessing a Shared Segment, 105
3.2.3 Changing Segment Size, 115

3.2.4 Creating and Accessing Huge Segments, 119
3.2.5 Suballocating Memory, 125

33 Multitasking 129

3.3.1 Semaphores, 129
3.3.2 Creating a Thread, 130
3.3.3 Creating Another Process, 140

34 Interprocess Communications 150

3.4.1 Pipes and Queues, 150
3.4.2 Shared Memory Segments, 163

3.5 Summary 163
References 164
Problems 164

Contents

art Il Advanced OS/2 Kernel Programming
4 0OS/2andC
4.1 Higher Levels of Abstraction 167

5

4.2

4.3

4.4

4.5

4.1.1 The C Include Files, 168
4.1.2 The Low-Level Nature of the API, 169
4.1.3 Comparison of C with Assembler, 170

Introductory C Programming with OS/2 171

4.2.1 C Program Architecture and Structure, 171
4.2.2 Accessing the API from C, 173

4.2.3 Graphics Using C and 0S/2, 178

4.2.4 Low-Level Access for Printer Graphics, 182

Memory Management and Multitasking
with C 188

4.3.1 Creating and Accessing Segments, 192
4.3.2 Creating a Thread or Process, 197

Other Programs 200

4.4.1 A Rotating Tetrahedron, 200
4.4.2 Plotting Dow Jones Activity, 204

Summary 217
References 217
Problems 217

ADDITIONAL 0S/2 CONSIDERATIONS

51
52

5.3

5.4

5.5

Mixed-Language Programming and OS/2 222
Dynamic Linking and Resource Management 226

5.2.1 Using Dynamic Linked Libraries, 227
5.2.2 The Definition File, 227

5.2.3 Creating a DLL, 231

5.24 DLL Examples, 232

Optimizing the C Design Process 239

5.3.1 Top-Down Design, Structured Programming, and
Modular Code, 240

5.3.2 Templates, Style, and Form, 246

5.3.3 API Return Values and Error Checking, 250

Reexamining the Core versus Presentation Manager
API Services 251

Advanced C Example: A Three-Dimensional Surface

251

167
167

221

5.6 Summary 267
References 267
Problems 268

APPENDICES

A
B
(o

IBM MACRO ASSEMBLER/2
MICROSOFT C COMPILER VERSION 5.1

FUNCTION DEFINITIONS AND MACROS
USED TO INTERFACE THE API

PROGRAMS USED IN THIS BOOK
KEYBOARD AND MOUSE KERNEL FUNCTIONS

ANSWERS TO PROBLEMS
INDEX

Contents

270
270
293

300
310
313

317
331

PART |
Introduction to OS/2

The OS/2 Environment

During the 1980s, IBM developed (in conjunction with Microsoft, Incorporated) the
Disk Operating System (DOS) [1] as a primary operating system for its family of
microcomputers: the IBM PC, XT, XT286, AT, PS/2 Models 25, 30, 50, 60, 70, and
80. These systems were developed using the Intel family of central processor unit
(CPU) chips, including the 8086, 8088, 80286, and 80386 [2—4]. DOS is a single-
thread single-user system and hence is capable of executing only one task at any
given time. Intel, however, provided the 80286 and 80386 with architectures that
ensure hardware protection for multiple applications. This prevents code segments
from being mixed during execution of multiple separate tasks. Such multitasking is
the framework required by the advanced applications in existence and slated to
arrive throughout the decade of the 1990s.

Toward the end of the 1980s a clear need developed for an operating system
that was capable of supporting and utilizing these advanced microcomputer hardware
architectures. In response to this need, IBM and Microsoft developed Operating
System/2 (OS/2) as their candidate to run on the Intel 80286-based (and 80386)
machines [5,6]. There are many facets to OS/2. Both IBM and Microsoft have
provided information needed to be able to program in the OS/2 environment through
their Toolkit (IBM) [7] and Software Development Kit (Microsoft) [8]. Initially,
following an early issue by Microsoft in 1987, IBM released OS/2 Standard Edition
Version 1.0 in December 1987. This early version employed the full-screen com-
mand prompt mode only, which initially displays a menu followed by a screen with

2 The OS/2 Environment Chap. 1

header. Basically, two modes were allowed: DOS compatibility mode, which runs
from a screen with a typical prompt such as

(C:\>)

and runs DOS programs, and OS/2 Protected Mode, which runs from a screen with
a typical prompt such as

[C:\>]
In the fall of 1988 IBM released Version 1.1 of the Standard Edition, which in-
cluded the Presentation Manager (PM) [9]. This provided a full Windows-like gra-
phical interface to the user. This graphical interface is very similar to that found
with the Apple Maclntosh operating system [10].

In addition to the Standard Editions, IBM and Microsoft have developed an
Extended Edition, which has a local area network (LAN) interface and a database
manager with support for Structured Query Language (SQL). The later editions of
OS/2 (Extended Edition 1.0-10/88 and 1.1-11/88) function in essentially the same
fashion as the Standard Edition; hence we will focus on the Standard Edition and
not address the LAN and database features in this book. Basically, we are interested
in programming highlights rather than specialized application packages.

IBM recommends a minimum of 2 megabytes (MB) of random access mem-
ory (RAM) for running Standard Edition 1.0, 3 MB of RAM for Version 1.1, and
3 MB of RAM for the Extended Edition (EE). Also, the EE may completely con-
sume a 20-MB hard disk drive [11]. Most versions of OS/2 come complete with
the CodeView debugger, which is capable of debugging both assembler and C code.
These are the two languages considered in this book. The language support for
0S/2 is extensive with assembler, FORTRAN, BASIC, C, Pascal, and COBOL
compilers existing. As indicated, we will focus on C [12] and assembler [13] for the
0OS/2 environment. Although IBM provides a Protected Mode editor with Version
1.1, in the program development for this book, VEDIT PLUS [14] was used as a
full-screen editor run from the DOS compatibility box. This process was quite
smooth and allowed for early development when only Version 1.0 was available.
Context switching between Real (DOS compatibility box) and Protected Mode was
accomplished rather efficiently in the OS/2 implementation. Programming the Pres-
entation Manager graphical interface is very much a Windows-like exercise [15].

With these introductory remarks in mind, where are we going with this book?
The goal is to establish for the reader the capability to write programs in the OS/2
kernel environment. We address code development in assembler (IBM Macro As-
sembler/2) and C (Microsoft C Compiler Version 5.1).

What is so unusual about OS/2 in relation to conventional Real Mode (Intel
80286 Real Mode) programming? In OS/2 the major achievement is the definition
of API services for access of the Protected Mode multitasking and memory manage-
ment features. Typically, an entire new class of function calls is added to the usual
assembler or C code. These functions (the API) constitute the system interface and
have syntax (in ASM) like

Sec. 1.1 Hardware Considerations - 3

@DosExit action, result

instead of the normal return instruction, ret, or

@VioScrLock waitf,iostat,viohdl
@VioGetPhysBuf PVBPtrl,viohdl

@VioScrUnLock viohdl

instead of int 10H. Hence it is apparent at a glance that OS/2 function calls tend to
require more parameters (versus register setup) than conventional assembler. They
have the added attribute, however, of being a symbolically elegant interface. By the
latter reference, we mean that the API services appear as a natural extension of
assembler or C code in modular and complete fashion.

0S/2 is a model operating system for illustrating advanced features in a sys-
tems software framework. As discussed, it is somewhat RAM intensive, although it
will run comfortably with 2 MB as an installed base. The principal accomplishment
is the segregation of services for operation in the multitasking environment. How
this segregation is accomplished is reflected in the programming techniques used to
write code for OS/2. OS/2 is a good example of how multitasking should be imple-
mented.

HARDWARE CONSIDERATIONS

0OS/2 is written primarily for the architecture of the Intel 80286 (and is compatible
with the 80386) as it exists in Versions 1.0 and 1.1 of the Standard and Extended
Editions. The manner in which the hardware and software coexist depends largely
on the Intel concept of segmented memory and the notion of levels of protection.
We examine these aspects of OS/2 and attempt to correlate the register-level hard-
ware with OS/2 address allocation. It is important to recognize, however, that keep-
ing with the Intel philosophy of downward compatibility, subsequent microproces-
sors in the 8086 family run code intended for the earlier chip sets. Hence the 80386
architecture, although more advanced than the 80286, will support 80286 Protected
Mode software. This means that OS/2 runs on 80386 machines as well.

1.1.1 The 80286 and 80386 Architecture

It is worthwhile examining the Intel 80286 (and 80386) architecture at this point
because this implementation serves as the basis for development of programs such
as 0S/2. Once we have touched on this hardware foundation, we can forever assume
that a starting point exists from which to explore the features of 80286 systems
software.

Intel started the 8086 family of microprocessors with initial entries that have
16-bit addressing. This includes the 8086, 8088, and 80286 chips. The 80386 has

4 The OS/2 Environment Chap. 1

32-bit addressing and represents a major step forward, in keeping with the increased
speed of these integrated circuits. What is the major limitation of the 16-bit archi-
tecture? In a physical sense (based on the actual wiring of circuits and memory) 16
bits provides only 2! or 65,536 possible individual references. This is the usual 64K
segment. Recognizing that this constituted a very limited memory capability, Intel
expanded the addressing concept to allow for multiple segments by providing a set
of segment registers used to hold segment addresses. (This was in addition to the
16-bit instruction pointer that held an offset into the code segment, for example.)
When IBM implemented the Real Mode operating system DOS, a 1-MB address
limit was built into the architecture which was based on a 20-bit address. Address-
ing was accomplished by shifting the segment address left 4 bits, appending a zero
(hexadecimal) to the segment address, and adding the offset to get the five-digit
hexadecimal physical address. For example, assuming a segment address 10AF and
an offset FOFF this physical address is

10AFO (segment address)
FOFF (offset address)
1FBEF (physical address)

where the usual notation would be 10AF:FOFF. What are the register structures used
to support this addressing scheme? In the 8086 and 8088 the following registers
exist:

Data

AX the Accumulator: This register can be used for general programming
storage.

BX the Base Register: This register is frequently used to hold address val-
ues when accessing memory.

CX the Count Register: During loop operations this register holds the
count index.

DX the Data Register: This register is used for general storage.
Segment
CS the Code Segment Register: This register points to the beginning of

the code segment block.

DS the Data Segment Register: This register points to the beginning of
the data segment block.

SS the Stack Segment Register: This register points to the beginning of
the stack segment block.

ES the Extra Segment Register: This register points to the beginning of
the extra segment block.

