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FOREWORD

Learning to Program in Structured COBOL is intended for
people with no previous knowledge of computers, who want to
learn to program in COBOL, the most widely used computer
language. Parts 1 and 2 of the Learning to Program series incor-
porate the methods and styles of ‘‘structured’’ programming,
which have been shown to be more productive than traditional
programming techniques.

Learning to Program in Structured COBOL, Part 1 can be
used as a stand-alone introduction to structured programming or
it can be used in conjunction with the more advanced concepts
and features that are presented in Part 2. Both are complete
texts and can be used effectively with other structured program-
ming texts; however, Parts 1 and 2 were designed to be used to-
gether as a teaching unit and are complementary in content and
approach as well as style and format.

The books can be used either for self-study or as the texts
for an industrial or college course. If you are an instructor,
please read the following Notes for Instructors, which discuss
possible uses of this book and its companion volume as basic
texts. If you plan to use either or both of the books to study
COBOL on your own, you will find the frequent questions and
exercises helpful, especially if you work them before checking the
answers provided.

We have tried to make your learning easy, thorough, and
fun. If you actually can run some of the exercise programs on a
computer, you will enhance your learning, and find it fascinating
to build a realistic commercial data processing system.

New York EY. CG., TS.



NOTES FOR INSTRUCTORS

One of the objectives of each book in this series is to serve
as the text for a three-week full-time training course or a one-
semester college course for people with little or no prior exposure
to data processing.

Apart from teaching COBOL entirely in the context of
structured programming, the course design incorporates several
well-established educational techniques that have not, so far as
we know, been applied in this area before. They are

o the concept of COBOL as a foreign language
] the concept of the spiral curriculum

o the concept of the ‘‘theory/practice sandwich”’
COBOL as a foreign language

Teaching a foreign language using a grammar is not as
effective as teaching via a set of syntactic structures. That is, it
is better to learn a language by learning basic conversational ex-
changes, such as ‘‘Have you got an X? Yes, [ have an X,”’ rath-
er than to learn ‘‘I have, you have, he has, she has. . . .”” If we
view COBOL in this light, we see that the standards manual and
manufacturers’ reference manuals are grammars of COBOL; they
set forth the rules of the language in a formal way, exploring all
the options of each statement, however obscure and rarely used.
Many texts and courses explain the reference manual, but essen-
tially follow the same pattern. In this text and in courses based
on it, we use the four structures — process, decision, loop, and
CASE — as the building blocks and teach the language with a
structural rather than a grammatical orientation.

Regarding COBOL as a foreign language also suggests that
we minimize the history and geography of the ‘‘country’ con-
cerned. While we do not question that a well-rounded profes-
sional should know the history of data processing from Hollerith
to HISAM, we believe that history is irrelevant and confusing to
the beginner, because it is of no help in performing his central
task of solving problems with code. Likewise, while a profes-

xi



xii NOTES FOR INSTRUCTORS

sional COBOL programmer should know enough about the archi-
tecture of the hardware to appreciate the implications of alterna-
tive coding techniques, the beginner needs only a very simple
model of main storage and common peripherals. We have taken
pains to concentrate initially on the production of readable,
changeable code, rather than on any considerations of run-time
efficiency; for example, binary representation is not discussed
until Chapter 10, in Part 2.

The spiral curriculum

Usually, topics in a subject can be arranged in a linear ord-
er, one after another. However, this is difficult to do in teaching
programming, because of the amount of interdependence
between topics; the instructor is in the chicken-egg situation of
not being able to teach topic A properly before the students
know about topic B, and not being able to teach B before they
know about A. The solution is to design a spiral curriculum in
which all topics are treated several times at progressively increas-
ing levels of detail. As you will see, Parts 1 and 2 develop five
levels of the spiral:

Chapter 1: brief explanation of the whole
program development process,
and a walkthrough of a simple
COBOL program

Chapters 2,3,4,5,6: establishment of the basic struc-
tures and language subset, with a
thorough discussion of COBOL
logic

Chapters 7,8,9,10: use of auxiliary storage, a larger
subset of the language, and inter-
nal data representation

Chapters 11,12: use of tables and advanced input-
output  techniques, including
buffering and blocking, and in-
dexed and relative input-output
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Chapters 13,14,15: use of sorting and merging tech-
niques, testing and debugging
strategies, efficiency as well as op-
timization

The theory/practice sandwich

It is often a temptation for someone who is expert in a sub-
ject to teach theory at a more profound level than is desirable.
This is partly because the more deeply one understands the
theory behind a subject, the simpler it appears. So, the instruc-
tor may feel that the subject can be made simple to the learner
by teaching the underlying theory at the same depth as the in-
structor understands it. This is a fallacy; the learner needs to
start with familiar, concrete ideas and simple skills, and then
learn abstract concepts. After a while, he can treat these abstract
concepts as concrete things and then learn deeper-level concepts,
and so on.

Introducing the subject of computer programming by teach-
ing binary arithmetic is a case in point; it is true that, at a deep
level, the computer is merely performing operations on binary
strings, but that is no help to the beginner. The temptation to
teach too much theory too early can be resisted by asking ‘“What
is the simplest act of mastery the learner can do next? What is
the minimum theory he must know in order to do that act of
mastery?”’ The idea behind the ‘‘theory/practice sandwich,”’
then, is a curriculum that, within each spiral, has the structure

minimum theory
simple act of mastery
next item of minimum theory

next act of mastery

and so on.



xiv. NOTES FOR INSTRUCTORS

The sequence of acts of mastery around which the book builds is

read a simple program

make a small modification to a program

write a card-to-print program

enhance the program to do some arithmetic

enhance the program to do complex logic

enhance the program to write a tape file

maintain the tape file

use the tape file to create an indexed disk file

use the indexed disk file in a simple accounting system

and so on.

Throughout the texts, specific program exercises, as well as
the overall concepts, build on each other in such a way as to
combine the maximum of learning with the minimum of coding
and keypunching.

In addition, instructors may find it useful to refer to the
suggested lesson plans and lecture notes for the first thirty ses-
sions of a course (three hours per session), provided in Appen-
dix B of Part 1.
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1 Making-the Computer
Do What You Want

1.1 Clerks, computers, compilers, and COBOL

You probably have heard a lot about computers before
picking up this book. Some of it may be alarming — for exam-
ple, how computers are invading and taking over our lives.
Some of it may be optimistic, as in the predictions of computers
doing all of the boring work, leaving people a life of ease and lei-
sure. Neither of these statements is true, of course, and by the
end of the book we hope you will be in a position to make up
your own mind about the meaning of computers (from a position
of strength), because you will be giving the orders.

That is what being a programmer is all about: giving the
orders to computers. Think of the computer as a clerk without
any common sense, and think of yourself as the clerk’s boss.
Whatever you tell the clerk to do, he will do exactly that, incredi-
bly fast, all the time drawing on a vast memory of what you and
others have told him in the past. But, if you tell the computer to
send out a check for $100,000 when you mean only $100, the
computer will blindly obey and pay the $100,000.

The key requirement of your job as a programmer is to
understand in practical terms what work people need done by the
computer, and then to translate exactly those needs into code the
computer can read and obey. Computers work by streams of
coded electronic pulses, which we shall discuss in detail later in
the book. Since these pulses, of course, are meaningless to hu-
mans, a variety of computer language translators have been
developed, to transform commands in an English-like language




