cDWARD YUURDUN ©
CHRISGANE ~ - -
TRISH SARSON
TIMOTHY R.LISTER

LFRANG 0

TUPROEEAVIN:
ol FUUCTURED CUB0L
WEagitch - TS

- YOURDOM: F100

Learning to Program
in Structured COBOL
Parts1and 2

I CARANIR

E8050981

Edward Yourdon
Chris Gane
Trish Sarson

Timothy R. Lister

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data
Main entry under title:
Learning to program in structured COBOL.

(Prentice-Hall software series)

Includes indexes.

1.-COBOL (Computer program language)
2.-Structured programming. l.-Yourdon, Edward.
I1.-Title. 1l1.-Series.
QA76.73.C25L4 001.6'424 79-12427
ISBN 0-13-527713-2

PRENTICE-HALL SOFTWARE SERIES
Brian Kernighan, advisor

Production Supervision by Lynn Frankel
Cover Design by Suzanne Behnke
Manufacturing Buyer: Gordon Osbourne

©1979, 1978, 1976 by YOURDON inc., New York, N.Y.

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher,

Printed in the United States of America

10 9 8 7 6 5 4 3 2

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

ACKNOWLEDGMENT

The following paragraphs are reprinted from American National
Standard Programming Language COBOL, published in 1974 by
the American National Standards Institute, New York:

COBOL is an industry language and is not the property of
any company or group of companies, or of any organization
or group of organizations.

No warranty, expressed or implied, is made by any contribu-
tor or by the CODASYL Programming Language Committee
as to the accuracy and functioning of the programming sys-
tem and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted materi-
al used herein

FLOW-MATIC (trademark of Sperry Rand Cor-
poration), Programming for the UNIVAC® [and
I, Data Automation Systems copyrighted 1958,
1959, by Sperry Rand Corporation; IBM Com-
mercial Translator Form No. F 28-8013, copy-
righted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole
or in part, in the COBOL specifications. Such authorization
extends to the reproduction and use of COBOL specifications
in programming manuals or similar publications.

FOREWORD

Learning to Program in Structured COBOL is intended for
people with no previous knowledge of computers, who want to
learn to program in COBOL, the most widely used computer
language. Parts 1 and 2 of the Learning to Program series incor-
porate the methods and styles of ‘‘structured’’ programming,
which have been shown to be more productive than traditional
programming techniques.

Learning to Program in Structured COBOL, Part 1 can be
used as a stand-alone introduction to structured programming or
it can be used in conjunction with the more advanced concepts
and features that are presented in Part 2. Both are complete
texts and can be used effectively with other structured program-
ming texts; however, Parts 1 and 2 were designed to be used to-
gether as a teaching unit and are complementary in content and
approach as well as style and format.

The books can be used either for self-study or as the texts
for an industrial or college course. If you are an instructor,
please read the following Notes for Instructors, which discuss
possible uses of this book and its companion volume as basic
texts. If you plan to use either or both of the books to study
COBOL on your own, you will find the frequent questions and
exercises helpful, especially if you work them before checking the
answers provided.

We have tried to make your learning easy, thorough, and
fun. If you actually can run some of the exercise programs on a
computer, you will enhance your learning, and find it fascinating
to build a realistic commercial data processing system.

New York EY. CG., TS.

NOTES FOR INSTRUCTORS

One of the objectives of each book in this series is to serve
as the text for a three-week full-time training course or a one-
semester college course for people with little or no prior exposure
to data processing.

Apart from teaching COBOL entirely in the context of
structured programming, the course design incorporates several
well-established educational techniques that have not, so far as
we know, been applied in this area before. They are

o the concept of COBOL as a foreign language
] the concept of the spiral curriculum

o the concept of the ‘‘theory/practice sandwich”’
COBOL as a foreign language

Teaching a foreign language using a grammar is not as
effective as teaching via a set of syntactic structures. That is, it
is better to learn a language by learning basic conversational ex-
changes, such as ‘‘Have you got an X? Yes, [have an X,”’ rath-
er than to learn ‘‘I have, you have, he has, she has. . . .”” If we
view COBOL in this light, we see that the standards manual and
manufacturers’ reference manuals are grammars of COBOL; they
set forth the rules of the language in a formal way, exploring all
the options of each statement, however obscure and rarely used.
Many texts and courses explain the reference manual, but essen-
tially follow the same pattern. In this text and in courses based
on it, we use the four structures — process, decision, loop, and
CASE — as the building blocks and teach the language with a
structural rather than a grammatical orientation.

Regarding COBOL as a foreign language also suggests that
we minimize the history and geography of the ‘‘country’ con-
cerned. While we do not question that a well-rounded profes-
sional should know the history of data processing from Hollerith
to HISAM, we believe that history is irrelevant and confusing to
the beginner, because it is of no help in performing his central
task of solving problems with code. Likewise, while a profes-

xi

xii NOTES FOR INSTRUCTORS

sional COBOL programmer should know enough about the archi-
tecture of the hardware to appreciate the implications of alterna-
tive coding techniques, the beginner needs only a very simple
model of main storage and common peripherals. We have taken
pains to concentrate initially on the production of readable,
changeable code, rather than on any considerations of run-time
efficiency; for example, binary representation is not discussed
until Chapter 10, in Part 2.

The spiral curriculum

Usually, topics in a subject can be arranged in a linear ord-
er, one after another. However, this is difficult to do in teaching
programming, because of the amount of interdependence
between topics; the instructor is in the chicken-egg situation of
not being able to teach topic A properly before the students
know about topic B, and not being able to teach B before they
know about A. The solution is to design a spiral curriculum in
which all topics are treated several times at progressively increas-
ing levels of detail. As you will see, Parts 1 and 2 develop five
levels of the spiral:

Chapter 1: brief explanation of the whole
program development process,
and a walkthrough of a simple
COBOL program

Chapters 2,3,4,5,6: establishment of the basic struc-
tures and language subset, with a
thorough discussion of COBOL
logic

Chapters 7,8,9,10: use of auxiliary storage, a larger
subset of the language, and inter-
nal data representation

Chapters 11,12: use of tables and advanced input-
output techniques, including
buffering and blocking, and in-
dexed and relative input-output

NOTES FOR INSTRUCTORS xiii

Chapters 13,14,15: use of sorting and merging tech-
niques, testing and debugging
strategies, efficiency as well as op-
timization

The theory/practice sandwich

It is often a temptation for someone who is expert in a sub-
ject to teach theory at a more profound level than is desirable.
This is partly because the more deeply one understands the
theory behind a subject, the simpler it appears. So, the instruc-
tor may feel that the subject can be made simple to the learner
by teaching the underlying theory at the same depth as the in-
structor understands it. This is a fallacy; the learner needs to
start with familiar, concrete ideas and simple skills, and then
learn abstract concepts. After a while, he can treat these abstract
concepts as concrete things and then learn deeper-level concepts,
and so on.

Introducing the subject of computer programming by teach-
ing binary arithmetic is a case in point; it is true that, at a deep
level, the computer is merely performing operations on binary
strings, but that is no help to the beginner. The temptation to
teach too much theory too early can be resisted by asking ‘“What
is the simplest act of mastery the learner can do next? What is
the minimum theory he must know in order to do that act of
mastery?”’ The idea behind the ‘‘theory/practice sandwich,”’
then, is a curriculum that, within each spiral, has the structure

minimum theory
simple act of mastery
next item of minimum theory

next act of mastery

and so on.

xiv. NOTES FOR INSTRUCTORS

The sequence of acts of mastery around which the book builds is

read a simple program

make a small modification to a program

write a card-to-print program

enhance the program to do some arithmetic

enhance the program to do complex logic

enhance the program to write a tape file

maintain the tape file

use the tape file to create an indexed disk file

use the indexed disk file in a simple accounting system

and so on.

Throughout the texts, specific program exercises, as well as
the overall concepts, build on each other in such a way as to
combine the maximum of learning with the minimum of coding
and keypunching.

In addition, instructors may find it useful to refer to the
suggested lesson plans and lecture notes for the first thirty ses-
sions of a course (three hours per session), provided in Appen-
dix B of Part 1.

Learning to Program
in Structured COBOL
Part 1

Ed Yourdon
Chris Gane
Trish Sarson

e RI RUR VRS RN |

47 CONTENTS |
- Part1 -

ACKNOWLEDGMENT
FOREWORD
MAKING THE COMPUTER DO WHAT YOU WANT

1:

1.1
1.2
1.3

Clerks, computers, compilers, and COBOL
Coding the data for the computer
Getting the data printed out

PROCESSES, DECISIONS, AND LOOPS

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29

Moving data from field to field

Initializing fields

Qualified data-names

Literals

MOVEing numbers

Program logic: the IF statement

Repeating blocks of code with loop structures
Structuring a sample program

Coding a sample program (SAMPLE-2)

DEFINING DATA FOR THE COMPUTER

3.1
3.2
3.3
34

35

3.6
37

The COBOL character set

Group items and elementary items

File Definition

Names

3.4.1 Naming the same data in different places
Punctuation, layout, and comments

3.5.1 Avoiding confusion with handwriting

3.5.2 Comments and continuation

FILE SECTION and WORKING-STORAGE SECTION
Initializing Working-Storage

3.7.1 Initializing constants with VALUE

3.7.2 Initializing flags, counters, and other fields

iii

ix

N A=

12

12
15
16
17
18
21
24
28
30

34

34
35
36
39
a1
42
43
44
45
48
48
49

iv. CONTENTS

3.8 Condition-names

Review Quiz
3.9 Designing, structuring, and coding a sample program
3.10 Getting the program to run

3.10.1 Compiler diagnostics

3.10.2 Diagnosing diagnostics

3.10.3 Executing the program

4: DOING ARITHMETIC

4.1 Arithmetic statements
4.1.1 ADD and SUBTRACT
4.1.2 MULTIPLY and DIVIDE
4.1.3 Rounding
4.1.4 COMPUTE
4.1.5 Dealing with result fields that are too small
4.1.6 Defining signed variables
Review Quiz

5: DEVELOPING PROGRAMS

5.1 Using the Source Statement Library
5.1.1 The COPY statement
5.1.2 COPY REPLACING

5.2 Steps to follow in developing a program
5.2.1 Specifying test data
5.2.2 Program checks
5.2.3 Simple debugging
5.2.4 User acceptance

5.3 Enhancing SAMPLE-3

6: PROGRAM LOGIC

6.1 Testing for conditions
6.1.1 Relational tests
6.1.2 Class tests
6.1.3 Condition-name tests
6.1.4 Sign tests
6.1.5 Complex tests

6.2 Nested IF statements
6.2.1 Block structures
6.2.2 The CASE structure
6.2.3 Simplifying nested IFs

50
52
53
71
72
74
75

76

76
76
77
79
80
82
82
84

85

85
85
87
88
90
91
92
94
95

107

107
107
108
109
111
111
114
120
125
127

6.3

CONTENTS v

Decision tables
6.3.1 Applying decision tables and nested IFs to a problem

7: GETTING DATA INTO AND OUT OF THE COMPIUITER

7.1

7.2

7.3

7.4

7.5
7.6
7.7

7.8

Magnetic tape

7.1.1 FILE-CONTROL paragraph for tape files

7.1.2 OPEN and CLOSE for tape files

7.1.3 READ and WRITE for tape files

7.1.4 Creating a tape file

Maintaining a sequential file on tape

7.2.1 Changes to a record

7.2.2 Additions

7.2.3 Deletions

Random access devices

7.3.1 Organization of randomly accessed files

Indexed file organization

7.4.1 Creating an indexed file

7.4.2 Randomly accessing an indexed file

7.4.3 Updating an indexed file, adding and deleting records
7.4.4 Other facilities with indexed files

7.4.5 Disadvantages of indexed files

Relative file organization

Controlling printer spacing and paging

Top-down implementation of a useful accounting system
7.7.1 Functional specifications

7.7.2 Systems design

7.7.3 File design

Building the system with a skeleton and successive versions

APPENDIX A: Reserved Words
APPENDIX B: Lesson Plans and Lecture Notes
APPENDIX C: Answers to Review Questions

129
134

158

158
160
160
161
161
180
181
182
182
200
203
203
205
209
211
216
216
217
219
221
221
225
227
227

233
237
253

PREFACE

Part 2

8: PROGRAMMING FOR CHANGE

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Characteristics of a gopod COBOL program
Hierarchies and structure charts

Cohesion and coupling in modular systems
COBOL modules and connections
Program-to-program linkage

The CALL statement

The LINKAGE SECTION

Using CALL to build systems

Structured program design methodologies

9: MORE POWERFUL FACILITIES

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

Traditional flowcharts

Details of the PERFORM statement

The PERFORM-UNTIL statement

CASE structures with GO TO DEPENDING ON
Literals, and why you shouldn’t use them
The ALTER statement

MOVE, ADD, and SUBTRACT CORRESPONDING
The COMPUTE statement

The INSPECT/EXAMINE statement

The STRING/UNSTRING statement

The ACCEPT/DISPLAY statement

vi

261

263

263
266
270
280
285
287
289
292
296

302

302
307
310
315
319
321
323
326
329
339
340

10:

11:

12:

CONTENTS vii

9.12 The STOP RUN statement 341
INTERNAL CODING AND THE DATA DIVISION 342
10.1 Representing numbers with ones and zeroes 342
10.2 Representing characters: USAGE DISPLAY, COMP, COMP-3 343
10.3 Alignment of fields: SYNC, JUSTIFIED 348
10.4 Negative numbers and the SIGN clause 350
10.5 Editing fields with PIC 353
10.6 Figurative constants 362
10.7 The RENAMES clause 363
10.8 The REDEFINES clause 365
10.9 Example 367
USING TABLES 370
11.1 Introduction 370
11.2 Defining related data items 370
11.3 Defining tables 374
11.4 Indexes and the SET statement 378
11.5 Sequential searches 379
11.6 The SEARCH and SEARCH ALL statements 382
11.7 Multidimensional tables 384
11.8 Variable length tables 387
11.9 Precautions with tables 388
ADVANCED INPUT-OUTPUT TECHNIQUES 390
12.1 IDENTIFICATION DIVISION options 390
12.2 ENVIRONMENT DIVISION options 391
12.3 Options of the OPEN and CLOSE statements 392
12.4 Buffering and blocking 394
12.5 Indexed input-output 397
12.6 Relative input-output 399
12.7 File status 400
12.8 The USE statement and DECLARATIVES section 403

viii CONTENTS

12.9 Introduction to Report Writer and Data Communications 404
12.10 Benefits of an operating system 405

13: SORTING AND MERGING 407
13.1 Introduction 407

13.2 The SORT statement 407

13.3 The SORT description (SD) 409

13.4 INPUT and OUTPUT PROCEDURES 409

13.5 The MERGE statement 414

14: TESTING AND DEBUGGING 415
14.1 Introduction to testing 415

14.2 Walkthroughs 416

14.3 Top-down testing 418

144 Common bugs 422

14.5 Debugging strategies and techniques 427

15: EFFICIENCY AND OPTIMIZATION 431
15.1 Introduction 431

15.2 Strategy for optimization 433

15.3 Measuring the inefficiency in your program 435

15.4 Programming techniques for efficiency 437
15.4.1 Avoid Unnecessary Internal Data Conversions 438

15.4.2 Organize Searches Efficiently 439

15.4.3 Organize IF-ELSE-IF Constructs Efficiently 441

15.4.4 Arrange Blocking and Buffering for Efficiency 442

15.4.5 Change CALL statements to PERFORM statements 443
AFTERWORD 445
APPENDIX 447
GLOSSARY 457

INDEX 467

1 Making-the Computer
Do What You Want

1.1 Clerks, computers, compilers, and COBOL

You probably have heard a lot about computers before
picking up this book. Some of it may be alarming — for exam-
ple, how computers are invading and taking over our lives.
Some of it may be optimistic, as in the predictions of computers
doing all of the boring work, leaving people a life of ease and lei-
sure. Neither of these statements is true, of course, and by the
end of the book we hope you will be in a position to make up
your own mind about the meaning of computers (from a position
of strength), because you will be giving the orders.

That is what being a programmer is all about: giving the
orders to computers. Think of the computer as a clerk without
any common sense, and think of yourself as the clerk’s boss.
Whatever you tell the clerk to do, he will do exactly that, incredi-
bly fast, all the time drawing on a vast memory of what you and
others have told him in the past. But, if you tell the computer to
send out a check for $100,000 when you mean only $100, the
computer will blindly obey and pay the $100,000.

The key requirement of your job as a programmer is to
understand in practical terms what work people need done by the
computer, and then to translate exactly those needs into code the
computer can read and obey. Computers work by streams of
coded electronic pulses, which we shall discuss in detail later in
the book. Since these pulses, of course, are meaningless to hu-
mans, a variety of computer language translators have been
developed, to transform commands in an English-like language

